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Abstract

Mammalian fertilization is a fascinating process that leads to the formation of a new individual. Eggs and sperm are complex cells that must
meet at the appropriate time and position within the female reproductive tract for successful fertilization. I have been studying various aspects
of mammalian fertilization over 60 years. In this review, I discuss many different aspects of mammalian fertilization, some of my laboratory’s
contribution to the field, and discuss enigmas and mysteries that remain to be solved.

Summary Sentence
During the past 60 years, considerable progress has been made in the analysis and manipulation of mammalian gametes and fertilization
processes, yet there are many important and interesting topics to be further explored.

Graphical Abstract
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Introduction

Analytical study of mammalian fertilization began in the
middle of the last century after Austin [1] clarified every
step of fertilization by his careful microscopic examination,
and Austin [2] and Chang [3] co-discovered that mammalian
spermatozoa require capacitation before they become fertil-
ization competent [4]. Thibault et al. [5] first saw a sperma-
tozoon within the egg (of rabbit) after in vitro insemination
using capacitated spermatozoa. After that, the use of various
species as well as various technologies and approaches, such as
electron microscopic, microsurgical, biochemical, molecular
approaches, and gene manipulations, greatly enhanced our
understanding of the processes of mammalian fertilization.
Here, I selected some of the topics that I thought need further
research, discussion, and debates.

1. Transport of rodent spermatozoa through
the vagina, uterus, and utero-tubal junction

It is generally thought that laboratory rodent spermatozoa are
inseminated directly into the uterus during coitus. In fact, in
the rat and hamster, for example, the bulk of semen (sperm
plus seminal plasma) can be recovered from the uterus soon
after coitus. Close examination revealed that the semen is
deposited deep in the vagina before it is transported to the
uterus [6].

Sperm transport from the vagina to the uterus seems to be
complex. Here is an example. When hamsters were injected
with human chorionic gonadotropin (hCG) 1 day before
expected time of luteinizing hormone (LH) release, ovulation
occurred about 12 h later as expected, but 15% of the females
did not come into behavioral estrus [7]. The remaining 85%
of females came into behavioral estrus. When these estrous
females were mated and examined 1–2 h later, semen was
found in the vagina, but none or only very few spermatozoa
were found in the uterus. Apparently, semen transport from
the vagina to the uterus does not occur automatically. The
release of prolactin from the pituitary triggered by the female’s
orgasm [8] may relax the cervix momentarily [9] or induce
a “pumping-up” motion of the cervix. Further studies are
needed to clarify this point.

When examined soon after mating, the uteri of mated
golden hamster females were exhibiting very active ad-
oviductal, peristaltic contractions, “pushing” boluses of dense
sperm mass to the utero-tubal junctions (UTJs) (Yanagimachi,
unpublished observation). It would be interesting to know
whether uteri begin active contractions if a sperm suspension
in a simple balanced salt solution was introduced into the
uterine lumen. If the uteri do not begin active contractions,
some components in the seminal plasma or female’s orgasm
must play a role in inducing the uterine contractions.

At least in the mouse, a protein on sperm head surface
encoded by gene Adam A3 is essential for sperm migration
from the uterus into the UTJ [10, 11]. Why Adam A3-
null spermatozoa are unable to pass through the UTJ is not
completely understood. It is likely that these spermatozoa are
unable to attach to the UTJ’s epithelium before swimming
through the UTJ. How spermatozoa ascend the UTJ is also
mysterious. According to Jungnickel et al. [12], mouse sper-
matozoa without flagellar protein ENKURIN are unable to
exhibit normal flagellar bending. They are far less efficient in
entering the oviduct than wild-type spermatozoa. Thus, both
motility and surface characteristics of spermatozoa seem to

Figure 1. An electron micrograph of mouse spermatozoa in the lumen of
oviduct’s isthmus about the time of ovulation after natural mating. Note
the presence of many globular and vesicular materials in the isthmus
lumen. Am, amorphous material; EP, mucus epithelial cell of isthmus; Lv,
large vesicle; M, microvilli of mucus epithelial cell; St, cross section of
sperm tail; and Sv, small vesicle. This electron micrograph was prepared
by Dr. Kiyotaka Toshimori after perfusion fixation of mouse oviduct.

play critical roles in sperm entry from the uterus into the
oviduct, at least in the mouse. In the hamster, spermatozoa
of the same species migrate from the uterus to the oviduct far
more efficiently than those of other species [13]; this migration
also requires that spermatozoa be uncapacitated [14].

According to Suarez [15], the lumen of the mouse UTJ
is filled with a “mucus.” This mucus and a narrow lumen
of the UTJ may prevent spermatozoa from exhibiting large
amplitude tail movements. A time-lapse movie (Muro et al.
[16]) shows mouse spermatozoa move very slowly toward the
isthmus along the smooth inner surface of the UTJ. How such
a slow flagellar beat is able to propel spermatozoa forward
is another mystery. Qu et al. [17] saw numerous mouse sper-
matozoa with their heads abutted against the epithelium of
the UTJ. They speculated that spermatozoa clustering together
in such an orientation and beating their tails synchronously
enable the spermatozoa to move into the UTJ. Spermatozoa
within the UTJ lumen were no longer clustered. Whether
co-operative tail movement by many spermatozoa is really
needed for sperm passage through the UTJ must be further
investigated. It may be sperm head attachment to the UTJ’s
epithelium, not sperm clustering per se, that is of critical
importance for sperm entry into the UTJ.

For sperm transport in the female genital tract of other
animals, readers are referred to excellent reviews already
available [15, 18–20]. We still know very little about sperm
transport in human female genital tract. Gene ADAM Met-
allopeptidase Domain 3 (ADAM3), essential for sperm trans-
port through the female tract of the mouse, is absent in human.
Even the longevity (survival) of spermatozoa within women’s
genital tract is not certain, with a range of less than 3 days
[21] to as long as 25 days [22].

2. Mysteries of the oviduct isthmus

Fertilization is possible without the isthmus of the oviduct.
Hunter and Leglise [23] and Patterson et al. [24] surgically
removed the entire isthmuses of pig oviducts and connected
the ampullas directly to the UTJs. When the pigs were mated,
a large proportion of oocytes were fertilized and developed
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into normal fetuses. Nevertheless, Hunter and Leglise noted
that many fertilized eggs were polyspermic, suggesting that
the isthmus prevents the migration of excess spermatozoa to
the ampulla where fertilization takes place. The functions of
the isthmus have been thought to be a temporary storage
of fertilizing spermatozoa and the release of capacitated
spermatozoa a few at a time to ensure that oocytes in the
ampulla are not swarmed by excessive spermatozoa [15, 25].
In human females, a specific sperm storage site has not been
identified [26].

The isthmus is a major segment of oviduct; it secretes
many molecules that affect the physiology of spermatozoa,
oocytes, and developing preimplantation embryos. Since the
oviduct undergoes very active adovarian peristaltic move-
ments during the periovulatory period (see movies presented
by Hino and Yanagimachi [27]), all molecules secreted by the
isthmus epithelium must be “pumped up” toward the ampulla
before, during, and even after ovulation. Therefore, all of the
spermatozoa and oocytes within the oviduct must be “bathed”
by molecules secreted by the isthmus epithelium. Isthmus
secretions seem not only to render oocytes and spermatozoa
more interactive but also to facilitate the development of
preimplantation embryos [28–31].

It is important to note that the mucosal epithelial cells of
the isthmus epithelium are very fragile. They can be readily
disrupted by manipulating or flushing the oviduct; there-
fore, the collection of isthmus secretions must be done very
carefully, or collected samples could be contaminated by
fragments of the plasma membrane and various intracellular
components released from disrupted epithelial cells. Such
contaminations could also include “oviductosome-like par-
ticles,” which might be formed as artifacts of manipulation,
rather than through physiological secretory processes. True
oviductosomes are membrane-bound vesicles produced by the
process of apocrine secretion [32, 33]. Figure 1 shows an
electron micrograph of the isthmic region of mouse oviduct
at about the time of ovulation after natural mating. The fluid
within the oviduct is by no means crystal clear. It contains
many amorphous, granular, and vesicular materials. Much
more studies are needed to learn about the origin, nature,
and function of materials present in the oviduct before and
during fertilization. Combination of biochemical, molecular,
and ultrastructural investigations is needed to better under-
stand the micro-environment within the oviduct before and
during fertilization in vivo. Figure 2A and B shows light and
electron micrographs of golden hamster spermatozoa in the
oviduct isthmus after natural mating. Whether sperm contact
with microvilli of isthmus epithelial cells is just physical
contact between the two cell types or indicates some material
exchanges between cells remain to be investigated.

Surplus spermatozoa, if not all, are phagocytized by epithe-
lial cells of the lower segment of the isthmus [34–36], not
by cells of other segments of the oviduct. It is puzzling why
spermatozoa are phagocytized there instead of draining to
the uterus and vagina. What happens to cumulus cells? Also
phagocytized?

3. Sperm chemotaxis

It is tempting to speculate that eggs or cumulus cells secrete
chemoattractants to guide spermatozoa from the lower seg-
ment of the oviduct to the upper segment where oocytes
await the arrival of spermatozoa. Do oocytes or the oocyte-
cumulus complex secrete a sperm attractant that diffuses from

Figure 2. Spermatozoa of golden (Syrian) hamster (Mesocricetus auratus)
in the oviduct isthmus after natural mating. (A) A group of spermatozoa in
a pocket formed by two mucosal folds. (B) Darkly stained sperm head
(Sh) appearing to be trapped by microvilli (Mi) of epithelial cells.

the ampulla down to the isthmus where spermatozoa reside
before ascending to the ampulla? This is most unlikely, at
least in common laboratory animals (e.g., hamster and mice),
because oviducts exhibit a very active, adovarian peristalsis
which brings the fluid within the oviduct upward (toward the
ampulla) rather downward during the periovulatory period
[27, 37]. It is important to note that the oviduct’s peristalsis
is very sensitive to temperature and dehydration. We have
observed that when oviducts are exposed to lower tempera-
ture or to the drying effect of air that may occur during surgery
or when they have been removed from the female, peristalsis
usually slows down and stops.

After spermatozoa have reached the ampulla, will eggs
attract spermatozoa? It is known in the mouse and rat that
cumulus cells actively secrete progesterone even after ovula-
tion [38–40]. Progesterone can not only induce the acrosome
reaction of spermatozoa [41–44], but it is also thought to
attract spermatozoa chemotactically [45–47]. It is important
to know whether progesterone concentration in the cumulus
oophorus (CO) is the highest around the oocyte and the lowest
in the periphery of the cumulus. Certainly, cumulus cells near
the mouse egg are packed more tightly than those in the
periphery of the cumulus (see Figure 2 of [48]), but it has not
been demonstrated that there is a progesterone concentration
gradient within the cumulus matrix.

It is known that a small fraction of the cortical granules
(CGs) in the egg cortex are extruded from the oocyte cortex
during the first polar body formation [49, 50]. One won-
ders whether CG material diffuses outward into the cumulus
matrix through the zona pellucida, thus producing a con-
centration gradient of CS material in the cumulus matrix to
direct spermatozoa toward the egg. This is a purely speculative
proposal.

It is possible that the cumulus directs spermatozoa to the
egg physically rather than chemically. In a fully mature mouse
cumulus-oocyte complex, for example, cumulus cells near the
egg are arranged radially (see Figure 3 of [28] and Figure 2 of
[27, 51, 52]). In other words, there are many radially arranged
cell-free, matrix-filled “canals” in the cumulus. Spermatozoa
entering the CO, if not all, may pass through these canals to
reach the egg. Perhaps, a radial arrangement of cumulus cells
directs spermatozoa toward the oocyte physically rather than
chemically.
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When an egg ages within the oviduct, the CO disintegrates
gradually and egg becomes “naked or almost naked”. Some
of these eggs, if not all, are still fertilizable. How are these eggs
fertilized? It is unlikely that naked eggs secrete progesterone to
attract spermatozoa. It must be random collision of sperma-
tozoa and oocytes in the fluid of oviduct, which is constantly
moving forward and backward by peristalsis of the oviduct
[27]. As long as eggs are able to develop into healthy offspring,
fertilization without participation of cumulus cells should be
considered normal.

There are numerous papers reporting chemotaxis, rheo-
taxis, and thermotaxis of mammalian spermatozoa. The
authors of these papers maintain that spermatozoa in the
lower segment of oviduct move upward being guided by (1)
a concentration gradient of substances secreted by the egg,
cumulus, or oviduct ampulla—chemotaxis, (2) fluid flow
from the ampulla to the isthmus—rheotaxis [52, 53], and (3)
a temperature gradient slightly higher in the ampulla than
the isthmus—thermotaxis [54, 55]. As already mentioned,
oviducts of laboratory rodents display a very active, adovarian
peristalsis during the periovulatory period. This oviduct
movement brings fluid inside of the oviduct upward (from
the isthmus to the ampulla) rather than downward (from the
ampulla to the isthmus). At least in rodents, the movement of
spermatozoa from the lower to the upper segments of oviducts
is very likely neither chemotactic, thermotactic, nor rheotactic.
It is unknown whether oviducts of larger mammals, including
humans, display an active, adovarian peristalsis during the
periovulatory period, but at least in the rabbit an active
peristaltic movement of oviducts within the body cavity was
observed [56].

4. Problems of sperm capacitation

Capacitation is referred to as a process that makes spermato-
zoa capable of fertilizing zona pellucida-enclosed eggs without
any delay. It naturally takes place within the female genital
tract, but it can occur under proper in vitro conditions. Since
capacitation commonly takes hours, not seconds to complete,
it must involve many physical and/or chemical events that
occur slowly. The release/removal of decapacitation factors
of epididymis and seminal plasma origin [57, 58] as well
as the removal of cholesterol [59, 60] and beta-defensin
[61, 62] from the sperm plasma membrane are just few
examples of many events that are believed to occur during
capacitation.

Figure 3 illustrates the behavior of golden hamster sperma-
tozoa in a culture medium and after they become capacitated
in vitro. When spermatozoa from the cauda epididymis are
suspended in a fertilization-supporting medium (m-TALP),
they at first swim individually (Figure 3A) but soon they
agglutinate head-to-head (Figure 3B). The number of sperma-
tozoa in each agglutination varies from 2 to almost 100 but
is commonly 7–20 (Figure 3C). All spermatozoa beat their
tails stiffly without much bending. This state lasts about 2 h.
Then, spermatozoa become free from agglutination one by
one and swim vigorously by flexing their tails (Figure 3D).
They soon change their swimming pattern to display so-called
hyperactivated motility (Figure 3E). When a hyperactivated
spermatozoon enters a “viscous” medium (or CO matrix), it
displays a serpentine movement (Figure 3F). When it returns
to a nonviscous medium, it resumes a “jumping around”
motion.

Apparently, characteristics of the sperm plasma membrane
change dramatically during capacitation. It seems that some-
thing covering the plasma membranes of the sperm head
and tail has been removed or modified during these 2 h
in the case of golden hamster. It is important to emphasize
that spermatozoa collected directly from the epididymis or
semen are simply unable to enter the egg’s vestments without
incubation under capacitating conditions [4, 63].

We should remind ourselves that what happens in vitro may
not happen in vivo. For example, mouse spermatozoa in vitro
undergo the acrosome reaction on the surface of the oocyte’s
zona pellucida [64, 65], but spermatozoa in the oviduct seem
to begin the reaction while they are in the isthmus [48, 66]. We
must reinvestigate where spermatozoa of many other species
begin their acrosome reaction in vivo.

Capacitation is defined as a process through which a sperm
gaining the ability to fertilize oocytes immediately. Since mam-
malian spermatozoa take at least 5–20 min or more to cross
the zona pellucida [67–69], only sperm samples capable of
fertilizing all or almost all of normal eggs within 30 min (or
60 min at most) in vitro or after putting them near the eggs in
vivo should be considered “capacitated.”

Capacitation normally takes place within the female genital
tract [70–73], but it can take place within various artificial
media. We must be aware that no single medium capaci-
tates spermatozoa of all species of mammals. Spermatozoa
of some species (e.g., mouse, rat, guinea pig, and human)
can be capacitated in ordinary embryo culture media, but
those of some other species require the presence of additional
specific substances in the capacitation medium: heparin for
bovine spermatozoa [74] and neurotransmitter and antioxi-
dant (epinephrine and taurine) for golden hamster spermato-
zoa [75] for example. This variation is understandable as the
internal environment of the female genital tract of a species
has evolved independent from that in all other species.

It has been thought that tyrosine phosphorylation of sperm
proteins is a key component of capacitation [76, 77]. Pro-
posed sites of tyrosine phosphorylation include the sperm
plasma membrane above the acrosomal cap [78], the outer
acrosomal membrane [79], fibrous sheath, dense fiber, and
axoneme of the sperm tail [80–82]. It was unexpected that
the tyrosine kinase inhibitor PF431396 did not prevent sper-
matozoa from becoming fertilization competent [83], even
though it reduces tyrosine phosphorylation. The function of
sperm protein phosphorylation may just be to maximize the
efficiency of spermatozoa to fertilize. We should be aware that
mouse spermatozoa maintained in the medium with H-89 (a
potent C-protein kinase A inhibitor) do not undergo protein
tyrosine phosphorylation, yet they become capable of under-
going both the acrosome reaction and hyperactivation to fer-
tilize cumulus-enclosed eggs [84]. Thus, at least in the mouse,
spermatozoa can become “capacitated” without protein tyro-
sine phosphorylation. Other types of protein phosphorylation
may be involved in sperm capacitation.

Guinea pig spermatozoa with very large acrosomes are
interesting in that they are able to undergo both the acro-
some reaction and hyperactivation without preincubation
in capacitation-supporting media. Those collected from the
cauda epididymis and suspended in a fertilization medium
containing low concentrations of membrane-active reagents
like Hyamine for 10–15 min begin the acrosome reaction
and hyperactivation and fertilize zona pellucida-enclosed eggs
very efficiently [85]. Barros et al. [86] first published and
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Figure 3. Behavior of golden hamster spermatozoa in fertilization-supporting medium. (A) The flagellar beating pattern of epididymal spermatozoon
shortly after release into medium. Note the shallow, symmetrical waves that originate near the head (labeled 1, 2 and 3). Spermatozoa first move freely
in the medium, but soon agglutinate head to head, beating their tails stiffly. (B) Two sperm attach to each other by the acrosomal region of the head. (C)
A large group of sperm agglutinated head to head. (D, E) After a few hours in capacitation medium, spermatozoa become free from agglutination and
swim vigorously, entering the state called “hyperactivation.” Note the deep flagellar bends. (F) When hyperactivated sperm enter a viscous medium or
cumulus oophorus, they display a serpentine movement. When they return to nonviscous medium, they resume hyperactivated (“jumping around”)
motion (E).

I confirmed that guinea pig spermatozoa undergo the acro-
some reaction when they are compressed under a coverslip.
The procedure I used was simple: Spermatozoa from the
cauda epididymis are suspended in a simple sperm incuba-
tion medium (102.3 mM NaCl, 1.7 mM CaCl2, 25.1 mM
NaHCO3, 0.25 mM Na-pyruvate, 21.5 mM Na-lactate, and
5.5 mM D-glucose). Next, a tiny drop of the sperm suspen-
sion is placed on a glass slide and covered with a medium-
sized coverslip (on warm microscope stage). This compresses
spermatozoa under the coverslip. After 20–30 s, a large drop
of culture medium is added to the periphery of coverslip to
allow spermatozoa to move freely in the medium. Many sper-
matozoa swim vigorously (hyperactivated). Many of them are
acrosome-reacted. When mixed with zona pellucida-enclosed
eggs, the spermatozoa were able to fertilize (Yanagimachi,
unpublished data). According to Green [87], 95% of guinea
pig epididymal spermatozoa undergo the acrosome reaction
within 10 min after Ca2+ ionophore treatment. Thus, at least
in the guinea pig, mature spermatozoa leaving the male’s body
are ready to undergo both the acrosome reaction and hyperac-
tivation without any preincubation (capacitation). Something
covering the sperm surface seems to be preventing spermato-
zoa from undergoing the acrosome reaction and hyperactiva-
tion. The removal or alteration of this coat seems to be the
essence of capacitation.

Tyrosine phosphorylation of sperm proteins believed to be
an essential component of capacitation takes place in the
plasma membrane covering the acrosome of sperm head as
well as the fibrous sheath, dense fibers, and axoneme in the
principal piece of sperm tail where the Ca2+ channel protein
CatSper is localized [80, 88, 89]. The ubiquitin-proteasome
system, which plays critical roles in sperm acrosome reactions
and sperm-oocyte interactions [90], may not be involved
directly in sperm capacitation [91]. It is rather astonishing
that sperm capacitation, discovered 70 years ago [2–4], still
remains a bit of a mystery today.

Metaphorically, the spermatozoon is like a planetary rocket
that makes a one way trip of no return. Its mission is to
deliver the nucleus (astronaut) to an egg (planet) covered by
very thick clouds (cumulus and zona pellucida). Although a

spermatozoon has ample storage of energy (fuel), it absorbs
some energy from its environment (the female tract) as a
rocket may use both stored energy (fuel) and solar energy. It is
most unlikely that the rocket (spermatozoon) carries a factory
(machinery) to build new structural components after launch-
ing (leaving the male’s body). Switching on and off of a built-
in instrument must be the major task that the spermatozoon
(rocket) does during its trip. Readers are referred to du Plessis
et al. [92] and Xu et al. [93] for the process and mechanisms by
which spermatozoa generate energy needed for their survival
and functions.

5. Sperm hyperactivation

As stated previously, cauda epididymal hamster spermatozoa
released into a fertilization-supporting medium first showed
a slow tail beating. Several hours later, they were moving
very fast and beating their tails vigorously. We saw spermato-
zoa showing a similar vigorously movement within oviducts
of mated female hamsters [94, 95], which I initially called
“activation” of spermatozoa. Later, I coined the term “hyper-
activation” [96] after consultation with Dr. C. R. Austin
[25] because the term “activation” had already been used to
refer to the initiation of sperm movement when quiescent
spermatozoa in the epididymal and vas deferens begin to
move on contact with the seminal plasma or physiological salt
solutions.

Since then, the occurrence of sperm hyperactivation was
confirmed in various other mammals including the human
(for reviews, see [25, 97]). The principal roles of sperm
hyperactivation are believed to be: the release of fertilizing
spermatozoa from the mucosal folds in the oviduct’s isthmus
which serve as a reservoir of fertilizing spermatozoa [98, 99],
and enhancement of sperm passage through the viscous CO
matrix [100] as well as the semi-solid zona pellucida of the
egg [95, 101]. Although the power output of a spermatozoon
before and after hyperactivation is about the same, the large
tail undulations of a hyperactivated spermatozoon provides a
maximal thrust against objects, such as the CO and the zona
pellucida [102].
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The initiation and maintenance of sperm hyperactivation
require Ca2+ [103]. When hyperactivated hamster sperma-
tozoa were washed with Ca2+-free medium and examined
5 min later, they were still hyperactivated (“jumping around”).
Then, 30 min later, they were all still motile, but none were
hyperactivated. They were moving rather sluggishly. On the
addition of Ca2+ (1.8 mM) to the medium, hyperactivated
motility of spermatozoa was restored. Ren et al. [104] first
reported that sperm hyperactivation is mediated by a specific
Ca2+ channel protein called CatSper in the plasma membrane
of the sperm tail. CatSper-null spermatozoa are motile but are
unable to exhibit hyperactivated motility and are unable to
pass through the egg’s zona pellucida to fertilize [89, 99, 104,
105].

One thing that we should be aware of is that, at least in
the mouse and guinea pig, mature spermatozoa collected from
the cauda epididymis and vas deferens are able to exhibit
both the acrosome reaction and hyperactivated motility with-
out “capacitation.” For example, guinea pig spermatozoa
collected from the cauda epididymis and suspended in an
ordinary bicarbonate-buffered balanced salt solution with
0.003% detergent Hyamine 2389 underwent both hyperac-
tivation and the acrosome reaction within 15 min. They were
able to fertilize zona pellucida-enclosed eggs [85]. According
to Barros et al. [86], guinea pig spermatozoa compressed
between a slide and coverslip for a few minutes underwent
the “acrosome reaction.”Those recovered by running medium
under the coverslip were able to fertilize zona-free hamster
eggs. I repeated this experiment and found that acrosome-
reacted guinea pig spermatozoa thus produced were able to
fertilize zona-intact guinea pig eggs (Yanagimachi, unpub-
lished data).

Hyperactivation and the acrosome reaction of spermato-
zoa are needed for fertilization of normal, zona pellucida-
enclosed eggs. Dysfunction of either one of them results in
fertilization failure. Normally, sperm hyperactivation begins
before the acrosome reaction. After the acrosome reaction,
hyperactivated spermatozoa become even more vigorously
motile [106]. This makes sense because it is the acrosome-
reacted spermatozoa that are able to pass through the “solid”
zona pellucida.

Whether sperm head and tail compartments are separated
or interconnected in terms of ions is important to know.
Can the acrosome reaction occur without sperm tail? Can
hyperactivation of the tail occur without a sperm head? These
questions may be answered by experiments using mutant
mice producing spermatozoa with heads and tails separated,
for example, by knocking out gene Spata6 [107]. In normal
spermatozoa, the sperm plasma membrane is fixed (fused
with?) with the nuclear envelope, at the “posterior ring”
(see Figure 3-3 of [26]). Whether the posterior ring plays an
important role in ionic communication or separation between
sperm head and tail must be investigated. No doubt that
both extracellular and intracellular Ca2+ play crucial roles
in sperm dynamics. Readers are referred to Costello et al.
[108] for the dynamics and functions of the sperm’s internal
Ca2+ store.

6. Time, site, and cause of sperm acrosome
reaction in vivo and in vitro

Although the acrosome reaction of mammalian spermatozoa
has been studied extensively, we still do not have a general

consent of the time, site, and cause (inducer) of the reac-
tion. The status of the sperm acrosome seems to be affected
by the physiological state of the female in vivo as well as
biochemical components in media we use for experiments
in vitro. Two things that are certain are (1) uncapacitated
spermatozoa with intact acrosomes are unable to enter the CO
surrounding the egg and (2) spermatozoa pass through the
zona pellucida only after completing the acrosome reaction.
In mice, it was thought for a long time that the egg’s zona
pellucida induces the acrosome reaction in spermatozoa. In
fact, zonae pellucidae of the mouse and many other mammals
including humans can induce the acrosome reaction efficiently
[64, 109–112]. However, mouse spermatozoa in vivo seem
to begin their acrosome reaction while ascending the oviduct
from the isthmus to the ampulla where fertilization takes
place [48, 66, 113]. Austin and Bishop [114] first reported the
presence of acrosome-reacting mammalian (hamster) sperma-
tozoa in the CO. Cummins and Yanagimachi [63] found that
hamster spermatozoa with swollen acrosomes (most likely
fully capacitated) entered the cumulus and completed their
acrosome reaction while passing through the cumulus or soon
after reaching the zona pellucida. Acrosome-reacted hamster
spermatozoa were unable to enter the cumulus. According to
Corselli and Talbot [115] however, acrosome-reacted hamster
spermatozoa are able to enter the cumulus, but they are unable
to reach the zona. This is in contrast to the report by Inoue et
al. [116] that acrosome-reacted mouse spermatozoa are able
to pass through the cumulus to reach the zona. In humans,
fertilizing spermatozoa in vitro seem to begin their acrosome
reaction within the cumulus and complete the reaction on
the zona pellucida [117, 118]. Thus, the readers see examples
of inconsistent and confusing reports from investigators who
used different species and different conditions for their studies.

We investigators are all looking for specific physiological
factor(s) that trigger or promote the acrosome reaction of
fertilizing spermatozoa. We should remind ourselves that sper-
matozoa of many species, including humans, can undergo the
acrosome reaction spontaneously and fertilize eggs in defined
media without the presence of any specific reagents, com-
pounds, eggs, and their coating materials. This does not mean
that specific substances are not involved in sperm acrosome
reactions in vivo.

There are many reports that oviductosomes secreted from
the oviduct contribute to capacitation and the acrosome reac-
tion of spermatozoa in vivo [33, 119, 120]. This will be
discussed in the next section.

7. Oviductin and oviductosomes: the oviduct’s
secretory products

Although in vitro fertilization and subsequent development of
preimplantation embryos are now possible in many different
species of mammals, we are aware that most of us started our
lives within our mothers’ oviducts. Ronald Hunter has been
a consistent advocate who has been urging us to appreciate
the importance of the study of the mammalian oviduct to
better our understanding of what happens there during the
beginning of the lives of all mammals including our own
species [18, 121, 122].

While one of my former associates and I were working
on hamster oocytes before and after ovulation, we noted
a distinct difference in the optical property of the zonae
pellucidae of oocytes before and after entry into the oviduct.
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Table 1. Comparison of approximate sizes of female genital tract, fully mature oocytes, and spermatozoa of the mouse, human, and whale.

Mouse Human Whale∗

Oviduct: length, stretched 1.5 cm 12 cm 40 cm
Uterus: length 1.5 cm 10 cm 70 cm
Oocyte proper: vitellus diameter 75 μm 120 μm 120 μm
Zona pellucida: thickness 7.5 μm 20 μm 30 μm
Round spermatid: diameter 10 μm 10 μm 10 μm
Sperm: entire length (head length) ∗∗ 120 μm (8 μm) 50 μm (4 μm) 60 μm (5 μm)
Erythrocyte: 7.3 μm 7.8 μm 7.7 μm

∗Bryde’s whale (Balaenoptera brydei), 12–15 m in adult body length. Length of oviduct and uterus was estimated by Dr. Hiroyuki Watanabe. ∗∗Note that
mouse sperm head is “flat,” whereas the heads of human and whale sperm have a more rounded shape.

We also noted that the zonae pellucidae of oviductal oocytes
have a greater ability to induce acrosome reactions in sper-
matozoa than those of ovarian oocytes [123]. Oikawa et al.
[124] reported the presence of a 200–240 kDa glycopro-
tein in the hamster oviduct that alters characteristics of the
zona pellucida. This molecule, later called “oviductin” [125],
binds to the zona pellucida and enhances sperm penetration
through the zona [126]. Zhao et al. [127] maintain that human
oviductin, which binds to human spermatozoa, potentiates the
acrosome reaction. Unexpectedly, oviductin knockout female
mice were as fertile as wild-type (control) females [128].
However, it is hasty to conclude that oviductin is not essential
for fertilization in all animals and humans, because acrosin-
null male mice, for example, are fertile (strictly speaking, less
fertile than wild-type males) [129], whereas acrosin-null male
hamsters are totally infertile [130]. Whether oviductin-null
males of other mammals are fertile, subfertile, or infertile
must be investigated. There are many excellent reviews on
the roles of oviductal secretions in gamete physiology, gamete
interactions, and preimplantation embryo development [28,
29, 131, 132].

Recently, much attention has been directed to “oviducto-
somes” secreted by epithelial cells that line the oviduct lumen.
They are nano-size protein and mRNA-containing vesicles
that bind to (and fuse with) spermatozoa to facilitate capaci-
tation and fertilization [120, 133–135]. Although some of the
vesicles reported by these authors seem to be secreted by the
oviductal epithelium, some proteins like Ca2+-ATPase [136]
are very likely released from epithelial cells disrupted during
the flushing of oviducts with medium. The oviduct’s mucosal
epithelium, in particular that of the isthmus, is delicate and
can be readily disrupted by harsh handling of the oviduct.

8. Size and shape of spermatozoa

Whales and cattle have much larger oviducts and uteri
than humans and mice (Table 1). While spermatids of mice,
humans, and whales are similar in size, mouse spermatozoa
are much larger (longer) than human and whale spermatozoa
(Figure 4). It is the length of the tail (flagellum), not the head
(nucleus), that makes the difference [137].

It is generally assumed that sperm swimming velocity is
positively associated with the length of spermatozoa and
that males with longer spermatozoa have advantages in fer-
tilization over those with shorter spermatozoa when males
compete for mating and the female accepts more than one
male [138, 139]. This does make sense if the female genital
tract is motionless, and its inner wall is uniformly smooth.
However, the oviduct is not a simple straight, stationary tube.
In the mouse, for example, the inner wall of the oviduct has

numerous folds and pockets and the oviduct itself manifests
very active, peristaltic movements during the periovulatory
period (see movies of the mouse oviduct with very active
peristalsis (Hino and Yanagimachi [27], see Supplemental
movies of oviduct’s movement). Spermatozoa stick to and
detach from the epithelium that lines the oviduct lumen before
reaching the ampulla where fertilization takes place. It must
be both the adovarian peristaltic movement of the female
tract and the sperm’s own movement that brings spermatozoa
to the ampulla of the oviduct. As seen in Table 1, round
spermatids of the mouse, human, and whale are all about the
same size; therefore, there must be some genetic control of the
length of the sperm tail. If this gene(s) is identified, then we
should be able to produce mutant animals with spermatozoa
larger or smaller than normal (wild-type) spermatozoa. It
would be of great interest to see which has advantage over
the other in fertilizing oocytes in the oviduct.

The spermatozoon is composed of a head and a tail. What
determines the shape, length, and volume of these two struc-
tures is still totally unknown ever since Fawcett et al. [140]
speculated that the form of the sperm head is probably deter-
mined not by external force (e.g., from the Sertoli cell) but
by DNA and nuclear protein during chromatin condensation.
Today we have many molecular and genetic tools to study
sperm morphogenesis. It is hoped that this age-old problem
of the sperm’s dimensional variation is solved before long. If
we can control the size and shape of spermatozoa, we will
learn much more about the physiology and competition of
spermatozoa.

9. Roles of protease/proteasomes in sperm
capacitation and sperm-oocyte interaction

The acrosome contains various hydrolyzing enzymes [25,
141]. Hyaluronidase and acrosin are the ones that have been
studied most extensively. They are believed to be important
for the sperm acrosome reaction as well as the passage of sper-
matozoa through the CO and zona pellucida surrounding the
oocyte. It is Sutovsky and his associates who played a leading
part in disclosing the important role of sperm proteasomes in
various steps of mammalian fertilization [90, 142]. It is most
likely that proteases including acrosin and proteasomes work
synergistically in various steps of fertilization, including sperm
capacitation, the acrosome reaction, sperm passage through
the zona pellucida, and even the egg’s block to polyspermy.
This will be discussed separately.

10. Roles of acrosomal enzymes in fertilization

Spermatozoa of all mammals have acrosomes. Although the
shape and size of the acrosome varies greatly from species to
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Figure 4. Spermatozoa (A) and mature oocytes (B) of the mouse and the Bryde’s whale (Balaenoptera brydei). This whale is 12–15 m in body length.
These photos were provided by Drs. Yutaka Fukui and Hiroyuki Watanabe.

species, its fundamental structure is the same. It is composed of
the anterior thick acrosomal cap and the posterior, thin equa-
torial segment. While the acrosomal cap contains a variety of
hydrolyzing enzymes, the equatorial segment is believed to be
devoid of enzymes [25].

Hyaluronidase is the acrosomal enzyme first discovered
and well characterized. Although it can depolymerize the
gelatinous matrix of the CO, its role in fertilization has
been the subject of controversy. Mouse spermatozoa have
two kinds of hyaluronidases, cell surface hyaluronidase (e.g.,
SPAM1/PH20) and intra-acrosomal hyaluronidases (e.g.,
HYAL5). Surprisingly, mouse spermatozoa without these
two hyaluronidases are fertile, but their spermatozoa are
less fertile than normal (wild-type) ones due to their inferior
ability to enter or pass through the cumulus [143, 144].
Perhaps, there are many other fertility-related acrosomal
enzymes that are not essential, but their presence enables
the proceeding of important steps when the primary enzyme
does not work well.

Acrosin, another well-characterized acrosomal enzyme, is
important for the swelling and dispersion of the acrosome
inner matrix [145–147] as well as sperm penetration through
the oocyte’s zona pellucida, at least in the hamster [130]. In
the mouse, we can prepare nearly 100% acrosome-reacted,
live spermatozoa by preincubating epididymal spermatozoa
in capacitation medium for 2 h then treating them with Ca2+
ionophore [148]. It would be interesting to know whether
such spermatozoa are able to attach to and penetrate the zona
pellucida in the presence of proteinase inhibitors such TLCK,
benzamidine, and soybean trypsin inhibitor.

When we watch a spermatozoon passing through the zona
pellucida (Figure 5A), we see the sperm head advancing
forward a little at a time by a scything motion of the head
(Figure 5B). The sperm head leaves a “canal” with sharp
contour (Figure 5C and D). This gives the impression that
the sperm head cuts open the zona matrix mechanically.
However, the surface of the sperm’s inner acrosome mem-
brane may be “covered” by membrane-anchored acrosin,
which serves as a “lubricant” of sperm head passage
through the zona. Under the light microscope, the zona
pellucida appears as a homogeneous gelatinous material,
but it is actually made of a mucopolysaccharide network
(Figure 5E and F).

It is important that the acrosome reaction makes sper-
matozoa capable of fusing with oocyte’s plasma membrane
[25]. The acrosomal enzyme acrosin, which is exocytotically
released during the acrosome reaction, seems to make the
sperm plasma membrane fusion competent [149]. Activation
and migration of IZUMO1 (sperm’s gamete fusion-mediating
protein) from the outer acrosomal membrane to the plasma
membrane of the equatorial segment of the acrosome (see Sec-
tion 15 on sperm-oocyte fusion) may also require proteolytic
activity of acrosomal proteases.

Although there are many papers reporting the presence
of acrosin on the inner acrosomal membrane during and
after the acrosome reaction [145, 150–152], there are other
papers reporting its absence [153, 154]. Further studies are
needed to determine which is correct. For localization of
acrosin, it is very important to wash live acrosome-reacted
spermatozoa thoroughly prior to application of anti-acrosin
antibody, or acrosomal matrix with acrosin activity might
precipitate on the inner acrosomal membrane during sample
preparation.

Yudin et al. [155] maintained that the inner acroso-
mal membrane of macaque spermatozoa has PH-20 with
hyaluronidase activity and this, not acrosin, plays the essential
role in zona penetration by spermatozoa. One should be
aware that hyaluronic acid is present in the outer half of
the zona pellucida as well as in the cumulus matrix [156].

Sutovsky has been the leading advocate of the importance
of sperm proteasomes in various steps of mammalian fer-
tilization such as sperm capacitation, the acrosome reac-
tion, and zona penetration by spermatozoa. Proteasomes are
on the outer and inner acrosomal membranes as well as
within the acrosome. Those on the outer acrosomal membrane
and acrosomal matrix are likely involved in the acrosome
reaction; those on the inner acrosomal membrane may play
important roles in sperm head attachment to and penetration
though the zona [90, 142, 157–160]. Sutovsky [90] main-
tained that proteasomes are on the inner acrosomal mem-
brane, which makes direct contact with the zona pellucida.
However, electron micrographs presented as evidence (Figure
7 of Sutovsky et al. [157]) are not convincing to verify the
presence of proteasomes on the inner acrosomal membrane.
To locate the site of “zona lysin” candidate(s) within sper-
matozoon, light microscopy is not appropriate because the
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Figure 5. Sperm passage through the zona pellucida (hamster). (A) Light microscope image of a live spermatozoon penetrating through the zona
pellucida (zp). This egg was lightly compressed between slide and a coverslip before photographed and therefore the PVS between the zona and egg
proper had disappeared. (B) Spermatozoon advances through the zona by a scything motion of its head. (C) Each spermatozoon leaves a sharply defined
canal (“ penetration slit”) in the zona. Zona pellucida (ZP) and inner acrosomal membrane (IAM). (D) Electron micrograph of a penetration slit. A cross
section of sperm flagellar midpiece of sperm is seen in the slit. (E, F) Scanning electron micrographs of human zona pellucida, showing its fibrous
network. A “hole” in the fibers of zona (F) representing a canal through which a follicle cell near the oocyte inserted its process to give nourishment to
the growing oocyte. Scanning electron micrographs of human zona pellucida (E and F) are from Familiari et al. [383].

sperm nucleus (head) is covered by various membranes: the
plasma membrane, the outer and inner acrosomal membranes,
and the nuclear envelope. Light microscopy cannot differ-
entiate among these membranes. To demonstrate zona lysin
on the inner acrosomal membrane, live acrosome-reacted
spermatozoa must be washed thoroughly before fixation.
Fixation of spermatozoa during the acrosome reaction is
not recommended because the contents (matrix) of the acro-
some may precipitate on the inner acrosomal membrane as
well as the plasma membrane covering the rest of sperm
head.

11. Why is the presence of cumulus oophorus
(CO) around the egg beneficial for fertilization?

Mammals are unique in that ovulated eggs are each
surrounded by nursing cells which provided nutrients to the
growing oocytes. These cells and their matrix are collectively
called the CO. Although fertilization is possible without

CO, the presence of CO around each oocyte seems to increase
the chance of successful fertilization at least in vitro [161–
163]. Hyaluronic acid in CO may enhance the zona pellucida’s
ability to induce the acrosome reaction of spermatozoa
[164]. Induction of human sperm acrosome reaction by CO
matrix has been reported repeatedly [165, 166]. Bedford and
Kim [167] postulated that expanded CO fills the lumen of
the oviduct ampulla and “traps” spermatozoa ascending
from the lower segment of the oviduct. In some animals,
progesterone secreted by CO cells may trigger the acrosome
reaction of spermatozoa. Why cumulus-enclosed oocytes
are fertilized better than less cumulus-free ones could be
explained in physical terms. The presence of the viscous CO
matrix around the oocyte prevents or reduces rotation of
the egg while a spermatozoon, with its head inserted into
the zona pellucida, beats it tail vigorously. The tip of the
acrosome-reacted spermatozoon is sharply pointed and its
scything motion cuts open the zona matrix [67, 168]. The
presence of a “viscous” cumulus matrix around the sperm tail
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would provide more thrusting power to the sperm head than
when spermatozoa are in a low viscous medium [169]. If this
assumption is correct, cumulus-free eggs held by a capillary
pipette would be fertilized more readily than those free in the
medium. Such an experiment is yet to be done.

12. How do spermatozoa pass through the
zona pellucida of eggs?

Field vole spermatozoa are very interesting. As expected,
acrosome-reacted spermatozoa pass through the zona pellu-
cida of the egg of its own species, but vole spermatozoa are
able to go through the zona of a mouse egg without the
acrosome reaction [170]. Since field vole spermatozoa swim
very fast (author’s unpublished observation), acrosome-intact
vole spermatozoa must cut open the mouse zona mechanically.
Perhaps, the zona pellucida of the field vole is much more solid
than that of the mouse, but this must be confirmed by actual
measurement.

A golden hamster spermatozoon passing through the zona
pellucida (Figure 5A) displays a scything motion of its head
(Figure 5B) [67, 169]. Human sperm heads also show a sim-
ilar, scything motion during passage through the zona [168].
Since the “sperm penetration slit (s)” left in the zona pellucida
has a sharply defined tunnel (see Figure 5C and D), it is possi-
ble that the head of an acrosome-reacted spermatozoon with
a sharp-pointed anterior edge cuts through the zona’s gly-
coprotein network (Figure 5E and F) mechanically. However,
it is more likely that spermatozoa use both mechanical and
enzymatic means in passing through the zona (cf. see Section
“Role of acrosomal enzymes in fertilization”).

It has been thought for many years that the acrosomal
protease, acrosin, plays a leading role in sperm passage though
the zona. Most of the acrosin is within the matrix of the
acrosome, but some is believed to remain on the inner acroso-
mal membrane after the acrosome reaction. It is this acrosin
that is thought to “digest” zona glycoproteins. The finding
that transgenic mouse spermatozoa without acrosin are still
able to pass through the zona pellucida [129] cast doubt that
acrosin is necessary for zona penetration. However, it should
be noted that acrosin-null spermatozoa are less efficient at
fertilizing oocytes than those of wild-type mice [171]. More
recently, it was found that acrosin is indeed needed for hamster
spermatozoa to pass though the zona. Acrosin-null hamster
spermatozoa are able to undergo the acrosome reaction and
attach to the zona pellucida, but they are unable to pass
through it [130]. Perhaps, proteasomes [157, 172–174] and
acrosin work synergistically during the acrosome reaction and
zona penetration.

Intracellular localization of acrosin and proteasomes must
be done at the electron microscopic level because the sperm
head has several membranes: the plasma membrane, the outer
and inner acrosomal membranes, and the nuclear envelope.
To see if the inner acrosomal membrane carries acrosin and/or
proteasomes, live acrosome-reacted spermatozoa must be
washed thoroughly before fixation, or acrosin/proteasome
in the acrosomal matrix may precipitate on the inner
acrosomal membrane during preparation of sperm samples
for electron microscopy. None of the studies published thus
far demonstrated convincingly that acrosin or proteasomes
are on the inner acrosomal membrane.

Spermatozoa of many species (e.g., hamster, rabbit, guinea
pig, pig, sheep) pass through the zona pellucida obliquely

(e.g., see Dickmann and Dziuk [175]). Bedford [176] tried to
explain why it must be that way. However, rat and human
spermatozoa can penetrate the zona perpendicularly [69,
177]. Dickmann and Dziuk [175] saw a thin “process” in
front of the pig sperm head within the zona and thought
that it might be “homologous” to the acrosomal filament, an
extension of the inner acrosomal membrane of invertebrate
spermatozoa that develops immediately before fertilization.
I witnessed that the head of hamster spermatozoa in the
zona pellucida advance forward by a scything motion as
already mentioned, but sometimes the head moves backward
before moving forward again. The fine process Dickmann
and Dziuk [175] saw in front of pig spermatozoon in the
zona (see Figure 1 of their paper) must be the slit made by the
spermatozoon that had moved backward temporarily.

13. Is the zona pellucida essential for
fertilization and embryo development?

The answer is no. At least in the mouse, oocytes freed from
zonae pellucidae can be fertilized monospermically in vitro
and develop into blastocysts that are able to develop into
normal offspring after transfer to their own or surrogate
mothers [178]. It is important to note that zona-less eggs
are prone to become fertilized by more than one spermato-
zoa (polyspermy) and that zona-free cleaving stage embryos
(1–4 cell stages) lost quickly from oviducts after transfer
[179]. Modlinski [180] observed “naked” mouse blastomeres
adhering to isthmus epithelium before being lost. No one
knows whether blastomeres are phagocytized by the oviduct’s
epithelial cells or drain into lymphatic lacunae of the isthmus.
Unlike human, mouse and most animals do not or seldom
have ectopic pregnancy [181].

Apparently, the zona pellucida is important for the pro-
tection of the early embryo inside from danger of adhesion
to epithelium or other cleaving embryos. In the mouse and
perhaps in other mammals and humans, zona-less embryos
in the early cleavage stages within the oviduct are trapped
by the oviduct’s epithelium and seem to perish. No one has
followed the fate of these zona-less embryos carefully. The
zona pellucida is essential in vivo, but not in vitro. For in
vitro, this is a good example of “far better to have than
not have.”

14. The presence of a perivitelline space in
unfertilized eggs: a unique feature in mammals

In most animals, fully mature eggs are each tightly surrounded
by an acellular coat called the vitelline envelope (=zona pellu-
cida). There is no space between the two. They are separated
after fertilization or egg activation to create the perivitelline
space (PVS). The PVS is formed by colloidal pressure of CG
materials released from the egg under the overlying vitelline
envelope. Mammals are exceptional in that a PVS exists
before fertilization. If there were no PVS in mammals and the
egg’s plasma membrane was in close contact with the zona
pellucida, fertilization would never occur, because the anterior
half of the head of an acrosome-reacted spermatozoon passing
through the zona pellucida is covered by a nonfusogenic
inner acrosomal membrane. Consequently, the sperm head
would likely be prevented from turning to expose its fusogenic
plasma membrane to the egg plasma membrane. The PVS
would provide the spermatozoa with the chance to reorient
the head and fuse with the egg.
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How is the PVS formed before fertilization? A PVS does not
exist in the fully grown oocyte at the germinal vesicle stage.
CGs are evenly distributed in the oocyte’s cortex. During the
first meiosis, some CGs are released from the egg cortex above
the meiotic spindle; more CGs are apparently released before
the egg reaches the metaphase of the second meiosis [49, 50].
This local “precocious” CG exocytosis is likely responsible
for the formation of a small PVS before ovulation. The PVS
becomes larger after eggs enter the oviduct. It is well known
that global exocytosis of CGs during fertilization is triggered
by the release of Ca2+ from internal stores [182]. How a local
CG exocytosis occurs during egg maturation is not known.

15. Membrane fusion of sperm and oocyte

In the golden hamster, the oocyte becomes capable of fusing
with spermatozoa during its growth when it is about 20 μm
in diameter and microvilli first appear. The capacity for fusion
increases as the oocyte grows. It reaches the maximum for
fusion at metaphase of the second meiosis when the oocyte’s
vitellus is about 70 μm in diameter. The fusion capacity of
the oocyte is reduced drastically upon fertilization and lost
completely by the eight-cell stage of embryonic development
[183]. In the mouse, too, the oocyte becomes fusion competent
when it is ∼20 μm in diameter. The capacity is lost by the four-
cell stage [184].

Unlike oocytes, spermatocytes and even fully mature
spermatozoa are unable to fuse with oocytes. Spermatozoa
become fusion competent only after completing the acrosome
reaction [25, 185]. It is now clear in the mouse that during the
acrosome reaction, the membrane protein IZUMO1 quickly
relocates from the outer acrosomal membrane to the plasma
membrane of the equatorial segment of the sperm head; this
relocation makes the spermatozoon fusion-competent [186,
187]. How does IZUMO1 migrate from the outer acrosomal
membrane to the plasma membrane above the equatorial
segment of acrosome during the acrosome reaction? Figure 6,
in my assumption, shows IZUMO1’s migration from the
outer acrosomal membrane of the acrosomal cap region
to the plasma membrane in the equatorial segment of the
acrosome. No one knows whether migration of IZUMO1 is
accomplished by a simple lateral dispersion of IZUMO1
molecules in the membrane lipid bilayer or that IZUMO1
migration is aided by actin-based molecular motors such
as those involved in the acrosome reaction. Involvement of
actin dynamics in the acrosome reaction has been reported
[188–192]. The second question is concerned with a temporal
migration of IZUMO1 to the plasma membrane of the post-
acrosomal region during the acrosome reaction. According
to Sebkova et al. [193], IZUMO1 covers the entire surface
of sperm head (including the post-acrosomal region) after
the acrosome reaction. A supplemental movie prepared by
Satouh et al. [194] shows that IZUMO1 quickly spreads
over the entire surface of sperm head, then retreats to the
plasma membrane of the equatorial segment. Whether or not
IZUMO1 migrates to the post-acrosomal region during the
acrosome reaction is an important issue. If IZUMO1 does
migrate to the post-acrosomal region even temporarily, it
may explain why Yanagimachi and Noda [195, 196] and
Toshimori [197] saw membrane fusion between the sperm’s
plasma membrane of the post-acrosomal region and oocyte’s
plasma membrane (microvilli). If IZMO1 does not migrate
to the post-acrosomal region, what prevents it from doing
so? The third question is whether acrosomal proteinases

(e.g., acrosin) are involved in activation and/or migration
of IZUMO1. In the hamster, the presence of proteinase
inhibitor in the medium during the acrosome reaction and
sperm-oocyte interaction markedly reduces sperm’s ability
to fuse with oocytes [149]. Acrosomal proteinase may not
only induce the swelling of acrosomal matrix (see Section10:
Role of Acrosomal Enzymes in Fertilization) but also may
contribute to activation and migration of IZUMO1 from
the outer acrosomal membrane to the plasma membrane of
the equatorial segment region of sperm head. It is highly
possible that acrosomal proteasomes work synergistically
with acrosomal proteases in this process. As of today, all
studies of IZUMO1’s migration were performed at the
light microscopic level. It should be done at the electron
microscopic level, too, to learn the detail of its migration. The
sperm head has many different membranes. Light microscopy
does not allow us to follow how IZOMO1 migrates from
the outer acrosomal membrane to the plasma membrane of
the equatorial segment of sperm head. According to Fusi et al.
[198], the adhesion molecule P-selectin appears on the plasma
membrane of acrosome-reacted (human) spermatozoa. It
is not there before the acrosome reaction. Its origin and
functional relationship to IZUMO1 are unknown.

IZUMO1’s counterpart is JUNO, a GPI-anchored mem-
brane protein, on the oocyte’s plasma membrane [199]. It
largely disappears from the egg surface after fertilization.
Although immune cytochemical micrographs of JUNO pre-
sented by Bianchi et al. [199] and Suzuki et al. [200] show
that JUNO is on the entire surface of oocyte, those by Mori et
al. [201] show no JUNO in the microvilli-free area. It is known
that microvilli-free area of the oocyte plasma membrane and
the polar body are not capable of fusing with spermatozoa
[25]. It should be noted that neither IZUMO1 nor JUNO has
fusogenic peptides [202]. They are cell adhesion molecules.

Other presumptive fusion-mediating molecules of oocytes
include ITGA9 [203] and CD9. The absence of the former
largely reduces the incidence of sperm-oocyte fusion. The
latter is required for normal structure of microvilli [204–208].
As of today, sperm molecules other than IZUMO1 that are
considered contributing to sperm-egg fusion include equatorin
[209], FIMP [210], SOF1, TMEM95 and SPACA6 [211],
CRISP2 and DCST1 and 2 [212]. Whether sperm-oocyte
fusion is accomplished by collaboration of many different
pairs of fusion molecules must be determined. It is possible
that the fusion is mediated by a single pair of molecules
and many others regulate sperm-oocyte adhesion prior to
fusion. Remember that sperm-oocyte fusion is Ca2+ and pH-
dependent [213, 214]. Why it is Ca2+ and pH-dependent must
also be investigated. In the mouse and guinea pig, K+ must
be in media during and after the acrosome reaction to render
spermatozoa competent to fuse with oocyte [215, 216]. Its
reason also remains unknown.

According to Barros et al. [217], hamster spermatozoa incu-
bated in a medium containing human serum for 4–5 h com-
pletely lose the ability to cross the zona pellucida. Equatorial
segments of these spermatozoa were extensively vesiculated
or lost completely, yet they were able to fuse with zona-
free oocytes. IZUMO1 or some unknown fusion-mediating
molecules must be in the post-acrosomal region of such sper-
matozoa.

Another puzzle is the presence of IZUMO1 at the tip
of the inner acrosomal membrane (Figure 6A and D) [194].
It is the frontal edge of the sperm head that is “pushed”
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Figure 6. Hypothetical view of IZMO1’s migration during the acrosome
reaction. IZUMO1 is shown as a red spot. (A) Before the acrosome
reaction, IZUMO1 is on the inner surface of the outer acrosomal
membrane. (B, C) During fusion and vesiculation of the plasma
membrane with the outer acrosomal membrane, IZUMO1 migrates
(diffuses?) via the fusion sites to the plasma membrane of the equatorial
segment. Surface views of the plasma membrane of the acrosomal
region (C) show how the plasma and outer acrosomal membranes
vesiculate and how IZUMO1 may migrate out of the acrosome
(acrosome contents shown in green) onto the plasma membrane and
toward the equatorial segment. (D) IZUMO1 reaches the plasma
membrane of the equatorial segment at the completion of the acrosome
reaction. Some IZMO1 are on the inner acrosomal membrane in the
frontal edge of the inner acrosomal membrane. They do not change their
position during sperm’s acrosome reaction. Four diagrams of membrane
vesiculation in the upper row of (C) are from Barros et al. [384].

against zona pellucida as the acrosome-reacted spermatozoon
passes through the zona (see Figure 5C). The inner acrosomal
membrane never fuses with oocyte’s plasma membrane. Does
IZUMO1 at this position act as a zona lysin? After the sperm
head passes through the zona pellucida, the tip of the sperm
head may (will) touch oocyte’s plasma membrane (microvilli).
Does this activate the oocyte? At any rate, the presence and
the role of IZUMO1 on the inner acrosomal membrane at
the frontal edge of acrosome-reacted mouse spermatozoa are
mysteries.

16. Sperm-borne oocyte activating factor: it
could be spermatid histone

Mammalian oocytes may activate spontaneously during post-
ovulatory aging in the oviduct or during in vitro culture. They
may also be activated by chemical (e.g., Ca2+ ionophore)
or physical agents (e.g., electric current). However, it is the
spermatozoon that activates an egg under ordinary in vivo
and in vitro conditions. Two strong candidates have been pro-
posed as the sperm-borne oocyte activating factors (SOAFs):

phospholipase C zeta [218, 219] and post-acrosomal sheath
WW-binding protein [220, 221].

Although results of many studies [222–227] seem to sup-
port the hypothesis that phospholipase C zeta is the SOAF, I
propose that histones in the sperm perinuclear theca (PNT)
could be the SOAF. It is purely speculative at this moment
but should be taken into consideration. In round spermatids,
histone is within the nucleus (Figure 7A). During compaction
of the spermatid nucleus, histone is replaced by protamine
and released histone becomes incorporated into the PNT
(Figure 7B) [228]. In fully developed spermatozoa, sperm
histone is a major component of sperm’s PNT (Figure 7C).
Part of histone in soluble form could be located between the
outer acrosomal membrane of the equatorial segment and the
overlying plasma membrane. While Tovich and Oko [228]
thought that sperm histone would stabilize the pronuclear
development of the sperm nucleus, I propose that PNT his-
tone remains around the sperm nucleus during the acrosome
reaction (Figure 7D) and enters the oocyte to activate the
oocyte (Figure 7E–G). Kimura et al. [229] dissected mouse
spermatozoa and found that PNT, not the nucleus, activates
the oocyte efficiently.

According to Kono et al. [230], the male pronucleus of a
fertilized mouse egg can activate an unfertilized oocyte when
transferred into it. The female pronucleus has less ability to do
so. This could be explained by assuming that the developing
male pronucleus collects more histone of sperm origin than the
female pronucleus (Figure 7H). Nuclei of two-cell embryos
(Figure 7J) still have oocyte-activating ability, but not those
of four-cell embryos (Figure 7K). How sperm histone actives
oocytes is unknown, but it may activate Toll-like receptor 9
in the oocyte’s plasma membrane as it happens in pancreatic
tumor cells [231].

17. Polyspermy block, with a note on human
diploid-triploid mosaics

In newts and birds with large oocytes, many spermatozoa,
sometimes hundreds, enter each oocyte. Each spermatozoon
carries such oocyte-activating proteins as protease and citrate
synthase [232, 233] and multiple sperm entry is necessary for
oocyte activation. Interestingly and importantly, only one of
many sperm nuclei that enter the oocyte fuses with female
pronucleus, while all others degenerate.

In mammals, multiple sperm entry into the oocyte is
detrimental. It results in the death of the zygote/embryo. Two
mechanisms exist to protect the oocyte from the danger of
polyspermy: the zona reaction and the plasma membrane
block to polyspermy. The zona reaction is a rapid series
of chemical changes in the zona pellucida that prevents
excess spermatozoa from entering/passing through the zona.
It involves partial hydrolysis of the zona’s protein by proteases
of CGs that are released from the oocyte’s cortex upon the
entry of the first spermatozoon into the oocyte [234–237]. In
the mouse, the zona reaction completes in less than 5 min after
sperm contact (fusion) with the oocyte’s plasma membrane
[238]. In humans, it completes in less than 10s [239].

In some animals (e.g., the rabbit, vole, and bat), there
does not seem to be a functional zona reaction. Spermatozoa
may keep passing through the zona even after fertilization
by the first spermatozoon such that numerous spermatozoa
accumulate within the PVS of a fertilized egg. In this case,
it is the oocyte’s plasma membrane that blocks the entry of
excess spermatozoa into the oocyte. The plasma membrane
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Figure 7. Proposed behavior of sperm histones during spermiogenesis, fertilization, and early embryo development. Spermatid histones are shown as
red spots. (A) First, histones are in spermatid’s nucleus (green). (B, C) Histones become part of the sperm’s PNT. (D–G) Spermatozoa during the
acrosome reaction and fusion with oocytes. During sperm-oocyte fusion, the histones disperse into the oocyte cytoplasm and activate the oocyte. (H–J)
The spermatid histones become incorporated into the male and female pronuclei and are still in the nuclei of 1–2 cell embryos. (K) Spermatid histone no
longer exists in the nuclei of four-cell embryo. C′ is an electron micrograph of the sagittal section of the mid-region of rabbit sperm head. Note the
presence of amorphous material (∗) between the plasma and outer acrosomal membranes of the equatorial segment. This material could be spermatid
histone more soluble than those in the post-acrosomal region of sperm head.

block to polyspermy occurs in oocytes of many other species.
Its mechanism is not very clear. According to Bianchi et
al. [199], the membrane fusion protein JUNO disappears
quickly from the mouse oocyte plasma membrane after the
first spermatozoon fuses with the oocyte. JUNO-less oocytes
are then unable to fuse with excess spermatozoa. How JUNO
proteins are released from an oocyte’s plasma membrane is
unknown. How proteasomes [240] and proteases released
from an oocyte’s CGs are involved in the polyspermy block
of the oocyte’s plasma membrane remains to be studied
further.

It is important to note that the plasma membrane of the
normally fertilized egg is not completely refractory to excess
spermatozoa. When naturally fertilized hamster and mouse
embryos at the two-cell and four-cell stages were freed from
their zonae pellucidae and then exposed to the additional sper-
matozoa, a considerable proportion of the early embryos were
penetrated by (fused with) the additional spermatozoa. After
the four-cell stage, the plasma membranes became unable
to fuse with spermatozoa [183, 184, 241]. More interest-
ingly, the plasma membranes of two- to four-cell embryos
that developed after parthenogenetic activation or intracy-
toplasmic sperm injection (ICSI) fused more readily with
additional spermatozoa than plasma membranes of embryos
developing from natural fertilization [242–244]. It is possible
that intermingling of sperm and oocyte plasma membranes,

as clearly demonstrated by Gaunt [245], contribute to the
oocyte plasma membrane block to polyspermy. At any rate,
the polyspermy block at the level of the egg plasma membrane
is very interesting and very puzzling [246].

The cause of human diploid-triploid mosaicism can be
either gynogenic or androgenic. As conjectured by Brems et
al. [247], and experimentally established by animal (mouse)
experiments [248], fusion of the second polar body with one
of the cells of a two-cell embryo results in the production of
a diploid-triploid individual. Another likely cause of diploid-
triploid mosaics is the delayed entry of a spermatozoon into an
already-fertilized egg [249]. Excess spermatozoa commonly
do not enter the egg, but it could happen in some eggs,
resulting in the production of two-cell embryos with one
diploid and one triploid blastomeres (Figure 8). This zygote
will develop into a mosaic individual. This experiment is yet
to be performed.

Finally, it is important to note that the oviduct, the natural
environment of fertilization, secretes various molecules that
maximize the efficiency of monospermic fertilization (see
Coy and Aviles [250], Coy and Yanagimachi [251], Braganca
et al. [252]) and the development of preimplantation embryos.
Although fertilization is possible without oviducts (e.g., by
IVF and ICSI), it does not mean that the oviduct is unim-
portant. Most readers of this chapter and I started our lives
within our mother’s oviduct as stated previously. We still have

Downloaded From: https://complete.bioone.org/journals/Biology-of-Reproduction on 07 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use



658 Mammalian fertilization, 2022, Vol. 106, No. 4

Figure 8. A presumptive cause of human diploid-triploid mosaicism. (A) The first spermatozoon (S1) enters the oocyte and stimulates resumption of the
second meiotic division (2n). (B) A pronucleus is formed from S1 nucleus. The rest of S1 sperm components breaks down and a second polar body is
formed. (C) The fertilized egg normally rejects the entry of excess spermatozoa, but an excess spermatozoon (S2) may enter the fertilized egg as shown.
(D) The nucleus of the second spermatozoon decondenses while chromosomes of the S1 sperm and those of egg duplicate and mingle. (E)
Chromosomes (n) of S2 spermatozoon mingle with chromosomes of one of two blastomeres of cleaving egg. (F) This results in the production of a
two-cell embryo with one diploid blastomere (2n) and one triploid blastomere (3n). This embryo develops into a 2n/3n mosaic individual.

to learn much more about what is going on within the oviduct
before, during, and after fertilization.

18. Sperm centrosome and embryo
development

Centrosome and microtubules play a central role for close
approximation and union of male and female pronuclei within
a fertilized egg as well as the subsequent cleavage divisions of
the embryos. In laboratory rodents (e.g., the mouse), centro-
somes are within the oocyte, not in the spermatozoon [253].
In many other animals (e.g., monkey sheep, cattle, and rabbit),
on the other hand, the fertilizing spermatozoon introduces
a centrosome into the oocyte [254–256]. The sperm centro-
some becomes the center of the formation of a microtubular
network that brings sperm and egg pronuclei to the center
of a fertilized egg [257–260]. Introduction of a defective
centrosome by a spermatozoon would inevitably result in
abnormal development and/or death of an embryo. Since
the oocyte’s cytoplasm seems to have dormant centrosomes
and microtubule-forming materials, removal of a defective
centrosome from spermatozoon prior to injection into an
oocyte may lead to the development and birth of a normal
baby. Morita et al. [261] showed that this is likely to occur.
They removed the centrosomes from rabbit sperm heads by
sonication and injected the centrosome-less sperm heads into
oocytes. The sperm aster was not formed, but the oocyte’s
centrosome was “awakened” to fulfill the sperm centrosome’s
function. Although Morita et al., followed the development
of eggs up to the four-cell stage, they did not determine if
the fertilized eggs could develop into fertile offspring. If a
human male’s infertility is suspected to be due to a sperm
centrosome problem [260], removal of the neck and tail from
a spermatozoon prior to ICSI could solve the problem.

19. Fertile life of human oocytes and
spermatozoa in oviduct

Human females are unique in that they, unlike females of most
other mammals, do not have a distinct behavioral estrus, and
therefore, mating (coitus) may occur any time before and after
ovulation. According to Schwartz et al. [262], pregnancy after
artificial insemination is best achieved when it is performed
between 4 days before and 2 days after the estimated day
of ovulation. This means that human spermatozoa can live
up to 4 days within women’s genital tracts, while oocytes
remain fertile for less than 1–2 days. Since ovulated oocytes
are viable for a relatively short period of time, fertilizing
spermatozoa should be in the oviduct as soon as oocytes
enter it. If coitus occurs long after ovulation, oocytes are
most likely “deteriorated” before meeting spermatozoa, even
though sperm capacitation may take place more quickly in the
female tract after ovulation than before ovulation, as shown
by animal experiments [72]. A classic study by Blandau and
Young [263] on guinea pig is noteworthy. Unlike common
laboratory rodents, the average litter size of the guinea pig is
2–4 pups. These authors artificially inseminated 462 females
between 4 and 32 h after ovulation. The first abnormal
embryos were seen in females inseminated 8 h after ovulation.
No normal embryo development followed insemination more
than 20 h after ovulation, and no development followed
insemination 32 h after ovulation. As it happens in the mouse
[264], human oocytes aged in the oviduct may have misaligned
meiotic chromosomes, resulting in aberrant meiosis and death
or abnormal development of offspring. From the epidemio-
logical point of view, spermatozoa should be in the oviduct
before an oocyte enters the oviduct. Someday, methods sim-
pler than currently available urine LH tests [265] could be
developed to detect or predict the time of the LH surge prior to
ovulation.
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20. Effect of light on eggs and embryos

In aquatic animals such as fish, amphibians, and marine
invertebrates, eggs are shed into the water and may be exposed
to direct sunlight, which is rich in UV light. Their eggs have UV
absorbing proteins containing mycosporine-like amino acid to
protect against DNA damage [266, 267]. Ever since fertiliza-
tion became “internal” during the evolution of mammals, no
UV or near UV light reached the inside of the female genital
tract, and therefore, eggs and embryos may have lost anti-UV
(sunscreen) molecules such as mycosporine.

Today, we routinely handle mammalian spermatozoa, eggs,
and preimplantation embryos under visible light before, dur-
ing, and after assisted fertilization. Sometimes, they may be
exposed to UV and near UV light. Daniel [268] first reported
delayed cleavage of rabbit eggs by visible light. Hirao and
Yanagimachi [269] found that near-UV light emitted from
ordinary fluorescent lamp disrupts the second meiosis of
hamster oocytes. Shielding the light with a red filter protected
oocytes from the detrimental effect of light. Vulnerability of
hamster oocytes to light was confirmed by other investigators
[270, 271].

The effect of light is likely due to the production of reactive
oxygen species within the oocyte’s cytoplasm [272, 273].
Hamster eggs seem to be exceptionally vulnerable to light.
Taurine included in fertilization and embryo culture medium
[75] seems to act as an antioxidant [274]. Although mouse
eggs are less sensitive to light than hamster eggs [273], a
detrimental effect of light on embryonic development in the
mouse is a certain possibility [275]. Since it is well known
that hybrid mice are more resistant to various environmental
stresses than are inbred mice, negative results obtained by
experiments using hybrid mice [276] should be taken with
caution. Whether or not light is detrimental to embryo devel-
opment of the rabbit [268, 277–279] and human [280, 281]
has been controversial. Further studies are needed to clarify
the effects of intense light on gametes and embryos of various
animals and humans. It is possible that eggs and embryos of
some women are deficient in the ability to protect against
oxygen radicals generated by light. Minimizing exposure to
intense light and addition of antioxidant to the medium may
increase the chance of fertilization and normal embryonic
development before transfer to females. Many IVF clinics are
now using Embryoscope to capture thousands of images using
light microscopy to determine which embryos are best to
transfer. Repeated exposure of embryos to intense light should
be done with caution.

21. Puzzles of seminal plasma and sperm
competition

In 1988, O et al. [282] reported the loss of many ham-
ster embryos after mating females with males whose acces-
sory glands had been partly or completely removed. In these
females, fertilization proceeded normally, but many embryos
died during their post-implantation development. Later, it
was found that seminal plasma protects spermatozoa from
oxidative stress [283], which may alter the DNA methylation
pattern of imprinted genes in embryos [284]. These reports
need further confirmation.

In the rabbit, cattle, and humans, semen (a mixture of
spermatozoa and seminal plasma) is deposited in the vagina.
Spermatozoa swim out of the seminal plasma to pass through
the mucus-filled cervix to enter the uterus. The seminal plasma
is left behind in the vagina. In common laboratory rodents

such as the rat and hamster, semen is deposited deep in the
vagina, but it is quickly transported to the uterus [6] perhaps
by rhythmic contractions of the cervix. Spermatozoa in the
uterus then enter the oviduct through the UTJ, leaving the
seminal fluid behind.

The seminal plasma is composed of secretions from various
male accessory glands (ampullary glands, seminal vesicles,
prostate glands, bulbourethral glands, and preputial glands).
The balance of secretions from different glands seems to be
important for survival of spermatozoa within the female tract.
The absence or dysfunction of any of these gland secretions
seem to be detrimental to spermatozoa within the female
tract. According to Kawano and her colleagues [285–287],
proteins secreted by the seminal vesicles of mice are important
for the survival, capacitation, and fertility of spermatozoa
within the female tract. It should be noted that fertilization
is possible without these proteins. It is well known that high
proportions of oocytes are fertilized in vivo after uterine or
oviductal deposition of spermatozoa suspended in a simple
defined medium without any seminal plasma components.
It seems that the seminal plasma proteins deposited in the
female genital tract after natural mating somehow maximize
the efficiency of fertilization in vivo [288, 289]. Requirements
for in vitro fertilization seem to be different from those for in
vivo fertilization. Readers are referred to Bedford [290] for his
opinion of the role of seminal plasma in fertilization.

When two or more males mate with a single female, what
will happen? Will spermatozoa from different males compete
with each other for fertilization? Many investigators maintain
that sperm competition is real. The fruit fly Drosophila has
been one of the favorite animals for the study of sperm com-
petition. Price et al. [291] stated: “In many animals and most
insects, the second male to copulate with a female typically
sires most of her offspring.” How should we interpret this?

Before discussing sperm competition, I would like to men-
tion the mating behavior of the golden (Syrian) hamster
(Mesocricetus auratus), which I believe is very suitable for the
study of sperm competition. My associates and I used this
animal to study the process and mechanism of fertilization
for many years and we observed their mating many times.
It is important to remember that the golden hamster is a
solitary animal and therefore males and females should be
kept separately and individually after weaning. If they are
kept in a single cage, they fight and hurt each other. Females
reach full maturity in about 2 months after birth, males in
about 3 months. The mature female has a very stable 4-day
estrous cycle. The day of ovulation is characterized by the
presence of a slightly yellowish vaginal mucus with a distinct
odor, which can be squeezed out of the vagina by gentle finger
pressure. Inspection should be done in the morning. The day
of this vaginal mucus discharge is called Day 1 of the estrous
cycle. Ovulation occurs in the early morning of this day under
ordinary lighting conditions. The vaginal mucus turns to a
waxy material on the next day (Day 2). The female comes into
heat (behavioral estrus) on the evening of Day 4 [292]. The
estrous female is characterized by the presence of a clear vagi-
nal mucus and her displaying a “lordosis” posture in response
to a male’s approach or an investigator’s finger stroking of
her back. Ovulation takes place about 8 h after the onset of
estrus [293]. Once Day 1 of the estrous cycle is determined,
then the day of estrus (Day 4) can be predicted accurately
several months ahead. Under ordinary light conditions (e.g.,
14L:10D, 5 a.m. to 7 p.m. light and 7 p.m. to 5 a.m. dark),
females come into estrus the evening of Day 4 Ovulation takes
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place about 8 h after onset of estrus [293], the early morning
of Day 1. The onsets of estrus and ovulation of the hamster
can be altered by changing lighting conditions at the time of
weaning. Gestation of the hamster is 16 days.

When a female hamster comes into estrus (heat), she cannot
be distracted. She will mate on a brightly illuminated desk
and even in a bucket. The male ejaculates after repeated
intromissions. Ejaculation can be distinguished from intro-
mission by a prolonged resting interval (∼20 s or so, licking
his genitalia) before the male resumes mounting the female. A
mating session lasts 30 min or longer. The female then goes
out of “heat.” If the female is approached by the same or
any other male, she bites them. It is interesting that estrus
ends after the female receives sufficient semen (spermatozoa).
Perhaps, oxytocin/prolactin release from the pituitary termi-
nates the female’s estrus. If the female does not encounter
a male(s), then “heat” will last 10 h or so (Yanagimachi,
unpublished observations). During the preparation of this
manuscript, I found reports by Lisk and Baron [294] who
stated that a female hamster accepts a second male for less
time (∼20 min), and far less for third and fourth males (∼12
and ∼6 min, respectively). This contradicts my observations.
Whether behavioral estrus (acceptance of male) lasts even
after the female receives “enough” spermatozoa remains to
be determined.

I did a series of experiments (unpublished) to see if hamster
spermatozoa from two males compete for fertilization in
vivo. Breeder males of proven fertility were used. Some were
albino and the others wild type (brown). Females were all
albinos. When an albino female was allowed to mate with
two males (albino and wild-type), both tried to mount the
female. Initially, males disrupted each other’s efforts, but soon
they mounted the female alternately. Both males were allowed
to mate for 30 min or so until the female became hostile to
males (bit them) and the mating session ended. Each female
delivered about the same number of albino and wild-type
pups. When an albino female first mated with an albino male
for 15 min, then with a wild-type male for the next 30 min
or vice versa, each litter was always composed of both albino
and wild-type babies. These results indicate that spermatozoa
that fertilize oocytes in vivo are not necessarily the ones that
enter the female tract first. In another series of experiments,
albino females were mated with albino males. About 2 h
after the end of copulation, females were anesthetized using
methoxyflurane vapor and the uterus was exposed by laparo-
tomy. Spermatozoa within two uterine horns were removed
by flushing uteri with Ringer’s solution before spermatozoa
from a wild-type male were put in each uterine horn. Sixteen
days later, females delivered both wild-type (black eyed) and
albino babies, indicating that fertilizing spermatozoa are not
necessarily the ones that enter the uterus first.

Kenneth Y. Kaneshiro of the University of Hawaii who
studied mating behavior of Hawaiian Drosophila for many
years [295, 296] stated: “At least in Drosophila, most of
the competition among males occur prior to mating. If such
competition took place post-mating, i.e., within the spermath-
eca, then there would not have been strong selection for the
evolution of such complex mating behaviors. In general,
females do not mate multiple times in nature and in the
laboratory. While there could be secondary mating’s under
crowded conditions, these occur only when a mating is
disrupted and the female is not able to receive spermatozoa
to fill its spermatheca. Under natural conditions, females are

very selective in mating with males that are able to satisfy
their courtship requirements and males must perform an
appropriate courtship display that would lower the threshold
of receptivity in the female that he is courting. The male
expends a lot of energy going through his courtship repertoires
to be acceptable to the female, which means that courtship
plays a key role in sexual relations and sexual selection in the
group” (personal communication).

In my opinion based on surveying the literature and the
results of my own experiments: (1) male to male competition,
(2) female’s choice, and (3) male’s age and luck (e.g., chance
of meeting female as well as the time after the last ejaculation),
rather than sperm-to-sperm competition, determine fertiliza-
tion success in vivo. This is, of course, the subject of open
debate.

22. Similarity between sperm and neurons

After studying the mammalian sperm acrosome reaction for
many years, Stanley Meizel [297] published a review entitled:
“The sperm, a neuron with a tail: ‘neuronal’ receptors in
mammalian sperm.” Receptors he listed included: adrenergic
receptors, GABA receptor channels, nicotinic acetylcholine
receptors, and olfactory receptors among many others. Meizel
maintained that these receptors play essential roles in sperm
acrosome reactions during normal fertilization. The presence
of a variety of “sensory receptors” (including odorant recep-
tors) in spermatozoa has been reported [298]. The presence of
neuronal (sensory) receptors may not be surprising. When our
ancestors were unicellular organisms, they had to reproduce
by cell division. During the course of evolution, two cells
united and exchanged genetic information before they mul-
tiplied further. This was the beginning of fertilization. Cells
that combine genetic information from different individuals
can be called gametes. Cells in the gamete stage must have had
some molecules to facilitate their union. The molecules can be
called “sensory (neuronal) mutually-attracting molecules.” In
the early evolutionary stages of sexually reproducing organ-
isms, all gametes must have resembled each other (Figure 9A).
Today, we still see this type of gametes and their union, called
isogamy, in yeasts and Chlamydomonas, for example. When
one type of gamete has evolved to become larger than the
other and is typically motionless, while the other type of
gamete has become small and typically motile, their union
is called anisogamy or heterogamy (Figure 9B). Today, we
see this in brown algae, for example. When one type of
gamete cell has evolved to become a much larger nutrient-
storing motionless cell (called oocyte/egg), while the other
is a small and motile cell (spermatozoon), their union is
called oogamy (Figure 9C and D), which we see today in
all animals.

In the sea urchin (Figure 9C), the mature, larger female
gamete, the egg, has completed meiosis and has a haploid
nucleus. Each egg is protected by noncellular coats (a thin
vitelline coat and a thick jelly coat). Tiny haploid, free-
swimming male gametes, spermatozoa, have an acrosome
containing lysins to dissolve the egg’s coatings. In mammals,
the egg coat is thick and elastic (Figure 9D). The oocyte has
not completed meiosis and does not become haploid until after
sperm entry into the oocyte cytoplasm.

When the ancestors of mammals were unicellular organ-
isms, the gametes must have recognized each other by chemi-
cal means (“odor”). Is it still true today? Students of sea urchin
fertilization think so [299, 300]. They have surmised that
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Figure 9. Comparison of male and female gametes of various organisms we see on the Earth today. For explanation, see the text.

the egg itself secretes a diffusible chemical factor (chemoat-
tractant) and its concentration gradient, which is highest at
the egg surface, attracts spermatozoa toward the egg proper.
However, we must remember that fertilization of many marine
animals, including sea urchins, takes place in turbulent sea-
water that is constantly moving forward and backward, not
like the tranquil water in a Petri dish. It must be exam-
ined carefully whether a concentration gradient of chemoat-
tractant around each egg is maintained, even in turbulent
water, and spermatozoa swim up to the gradient toward
the egg.

In mammals, fertilization takes place within the female’s
oviduct, which is not stationary at all, in particular during
fertilization. In the mouse [27] and perhaps in other rodents
and some other mammals, oviducts of females during the
periovulatory period exhibit very active peristaltic movements
that move the fluid within the oviduct forward and backward.
There is no concrete evidence that spermatozoa in the
oviduct are attracted by chemicals released from a live oocyte

or from cumulus cells surrounding the oocyte. Even after
extensive “washings” of cumulus-oocyte complex with a
physiological salt solution, spermatozoa still are able to
enter the cumulus to fertilize oocytes. The notion that a
live oocyte keeps secreting a sperm attractant to direct
a spermatozoon into it is also unlikely because oocytes
killed by freeze-thawing under nonprotective conditions
[301] or by storage in highly concentrated salt solutions
[302] still allow spermatozoa to pass through the zona
pellucida.

At any rate, the presence of many neuronal receptors in
mammalian spermatozoa is very puzzling. Why are they there
and what are they for? During evolution, the functions of
neuronal receptors may have been altered. Instead of serving
to the mutual attraction of male and female gametes, they
may become involved in triggering the sperm’s acrosome
reaction [297], hyperactivation, and even other events during
spermatogenesis and epididymal maturation of spermatozoa
(Meizel, personal communication).
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23. ICSI: its short history and challenges to be
considered

Uehara and Yanagimachi [303, 304] started sperm injection
into oocytes out of simple scientific curiosity—just to see
what would happen. Would the oocytes remain unchanged
or start to participate in syngamy and embryo development?
In any case, the result would be interesting to know. We then
found that the heads (nuclei) of epididymal spermatozoa (even
those of hardly motile testicular spermatozoa) could develop
into normal looking pronuclei in eggs. This study initially
drew no interest by others, except [305–307] who applied
this technique to analyze the mechanisms of sperm nucleus
decondensation within the egg cytoplasm. It was Iritani and
Hosoi [308] and Goto et al. [309] who first obtained live
offspring of the rabbit and cow after sperm injection into
eggs. In 1992, after pioneering study by Lanzendorf et al.
[310], Palermo et al. [311] reported the birth of human babies
after injection of spermatozoa into eggs, which has been called
intracytoplasmic sperm injection or ICSI. It was quickly found
that ICSI could rescue various forms of human male infertility,
including oligospermia, cryptozoospermia, asthenospermia,
and teratospermia [312].

A major difference between ICSI and natural fertilization
is that in the former, the entire body of a spermatozoon
including the plasma membrane and the acrosome is injected
into the oocyte cytoplasm (ooplasm). During normal fertil-
ization, the sperm plasma membrane fuses with the oocyte
plasma membrane and stays on the egg’s surface. Acrosomal
contents which include powerful hydrolyzing enzymes are
released from spermatozoa during the acrosome reaction and
never enter the oocyte cytoplasm [25]. If a live spermatozoon
is injected into an egg, it may keep swimming within the
egg cytoplasm for some time until its plasma membrane
disintegrates. The sperm nucleus then begins to decondense.
Nuclear decondensation occurs quickly for some spermato-
zoa and slowly in others. Prior to human ICSI, the plasma
membrane of the sperm tail is broken. This is done by sucking
a spermatozoon tail first partially into an injection pipette,
then “scraping” the tail against the bottom of dish. Since the
plasma membrane of mature spermatozoon has no under-
lying cytoplasm and is unable to repair by itself, damaged
sperm membrane will disintegrate progressively after injection
into the oocyte cytoplasm. The speed of sperm membrane
disintegration within the egg cytoplasm would vary from
spermatozoon to spermatozoon. Consequently, the time when
SOAF is released into the egg cytoplasm would vary from egg
to egg. If the sperm plasma membrane is removed prior to
ICSI, egg activation occurs much faster. This was proved to be
the case [313].

We tend to speculate that normal-looking spermatozoa with
good motility are genomically “normal,” whereas those with
poor motility and deformed heads are genomically abnormal.
Burruel et al. [314] studied this by using BABL/c mouse. This
mouse strain has been used extensively for studies of cancer,
immunology, and cardiovascular diseases, but it is one of least
fertile strains of mice. About 70% of their spermatozoa are
deformed, many of them being grossly abnormal in head struc-
ture. We were able to produce healthy offspring after injection
of spermatozoa with grossly abnormal heads. Although the
incidence of genomic abnormalities seems to be higher in
deformed spermatozoa than in normal-looking spermatozoa,
not all the spermatozoa with deformed heads are genomically
abnormal [315].

Will it be possible to assess genomic status of spermatozoa
without “killing” them? Methods proposed by Watanabe et
al. [316] and Yang et al. [317] are very labor-intensive and
time-consuming; therefore, conventional genomic analyses of
cells from preimplantation embryos [318, 319] are still the
best way today to avoid the birth of offspring with serious
developmental problems.

The volume of the acrosomes of some species (e.g., those
of the hamster and guinea pig) is very large relative to the
volume of the entire body of the spermatozoon, and therefore,
injection of an acrosome-intact spermatozoon of such species
inevitably results in the death of the oocyte [320]. Acrosomes
must be removed prior to ICSI to avoid the death of oocytes.
The cause of oocyte’s death is unknown, but the cytoskeletal
system seems to be extensively damaged as evidenced by the
deformation of the oocyte prior to its disintegration. In species
whose spermatozoa have small acrosomes, like those of the
mouse and human, the removal of the acrosome prior to
ICSI may not be necessary. However, eggs of some individuals
could be vulnerable to damage by exogenous proteases such
as acrosin. In such cases, the removal of the acrosomes from
spermatozoa prior to ICSI would lead to a higher rate of suc-
cessful pregnancy. Although Morozumi and I recommended
the removal of acrosomes from human spermatozoa prior to
ICSI [321, 322], this still has been totally neglected. Neverthe-
less, there must be some women whose oocytes are sensitive
to exogenous proteases such as sperm acrosin.

Spermatozoa of many farm animals (e.g., cattle, sheep, and
pig) have fairly large acrosomes. The removal of both the
plasma membrane and acrosome from the sperm head prior to
ICSI may increase fertilization success rate. As of today, ICSI
in farm animals has not been very successful [323–328].

24. Fertilization by round spermatids and
spermatocytes

Female germ cells, eggs, become fertilization competent during
meiosis. Then, how about male germ cells? Do they become
fertilization competent only after meiosis and transformation
into round spermatids to spermatozoa? My colleagues and I
found that the nuclei of mouse round spermatids that had just
completed meiosis were able to produce live offspring after
injection into eggs [329–331]. We produced five generations
of mice by round spermatid injection (ROSI) and compared
the fifth generation with the control (naturally bred) mice. We
found no difference between the two in their growth, fertility,
or behavior [332].

As of today, laboratory animals other than the mouse that
have produced offspring through ROSI include: the rat, ham-
ster, rabbit, and rhesus monkey (see Yanagimachi for review)
[333]. The overall efficiency of ROSI in these animals is low
and its reason is unknown. It seems that the egg cytoplasm
suppresses expression of some of spermatid-specific genes
(e.g., protamine1 and protamine2; [334]) and this correlates
with the disruption of embryo development [335].

For successful ROSI, the eggs after ROSI must be
fully activated. Do round spermatids have the ability to
activate eggs? Yazawa et al. [336] studied species specificity of
oocyte activation by round spermatids. They injected round
spermatids of various species of animals into mouse oocytes
and found that spermatids of either the mouse or rat were
unable to activate mouse eggs, while those of the hamster,
rabbit, and human could do so even though the patterns
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of intracellular Ca2+ oscillations were not quite normal.
Although human round spermatids have the ability to activate
human eggs, post-ROSI stimulation of oocytes (e.g., by electric
current, Ca2+ ionophore, or phospholipase C) enhances
subsequent embryo development.

Tesarik et al. [337] were the first to report the birth of
human babies by ROSI, followed by Gianaroli et al. [338] and
Tanaka et al. [339, 340]. The key to success of human ROSI is
the correct identification of round spermatids. Human round
spermatids and spermatogonia are similar in appearance and
size, but they can be distinguished from each other by the
presence or absence of nucleoli. The nucleus of a spermato-
gonium commonly has one or a few nucleoli, whereas that of
a spermatid has none. Although the presence of an acrosome
vesicle is a reliable indication that the cell in question is a
spermatid, its absence does not mean that it is not [340,
341]. We wish there were antibodies available that specifically
bind to the plasma membrane of spermatids so that we could
distinguish round spermatids from all other types of cells in
the testis. As of today, such antibodies are not available.

Why do round spermatid nuclei have less ability to pro-
duce live offspring than nuclei of mature spermatozoa? It
is known that the nucleus of the mature spermatozoon is
loaded with small and large noncoding RNAs [342, 343],
which are believed to play important roles in regulating
gene activities of developing embryos [344]. Although these
sperm-borne RNAs are not absolutely required for embryo
development in view of parthenogenetic (gynecologic) devel-
opment of oocytes following extensive gene manipulations
[345], it is certainly possible that sperm-born large and small
RNAs enhance embryo’s survival by ensuring correct gene
expression and epigenetic setup. When we performed ROSI
[329, 331], the entire contents of a round spermatid were
injected into the oocyte’s cytoplasm and therefore all or
almost all of the spermatid RNAs, both large and small,
must have been transferred to the oocyte. However, additional
injection of sperm RNAs might improve embryo development
following ROSI.

We were able to obtain live offspring after injection of
mature oocytes with nuclei of secondary spermatocytes [330]
and even primary spermatocytes [346, 347]. However, its
efficacy, in particular after injection of primary spermatocyte
nuclei, was far lower than that of ROSI. Premature separation
of sister chromatids within the oocytes seemed to be a major
problem in the case of primary spermatocyte injection. This
problem may be resolved by co-injection of cohesin to main-
tain sister chromatids’ adhesion, but such experiments have
not been done.

25. Sperm sexing

Ever since the role of sex chromosomes in sex determination
was clarified in the beginning of the last century, numerous
attempts have been made to separate X- and Y-chromosome-
bearing spermatozoa. Although many different procedures
have been proposed and claimed to be successful, none were
very convincing except for the one that uses flow cytometry to
measure and sort DNA-stained sperm on the basis of relative
DNA content. This method developed by Johnson and his
colleague [348] has been used commercially in cattle breeding
[349] and applied successfully to other mammals (e.g., sheep,
goats, rabbits, pigs, horses, deer, cats, dolphins, and primates)
as well as humans [350].

Recently, Umehara et al. [351, 352] claimed that they could
isolate mouse spermatozoa by either the X- or Y-chromosome.
The principle of this technique is that Toll-like receptor (TLR),
known to play a key role in the innate immune system, is
in the plasma membrane of the sperm tail. In the presence
of the potent TLR7/TLR8 activator, resiquimod, Y-carrying
spermatozoa swim faster than X-carrying ones. This makes
it possible to prepare sperm suspensions rich in either X- or
Y- carrying spermatozoa. Artificial insemination using sex-
sorted mouse spermatozoa resulted in the birth of offspring
of expected sex at ∼80% accuracy.

Since numerous spermatogenic cells, including round and
elongating spermatids, are connected by intercellular bridges
until spermatozoa are released from Sertoli cells [353], it
is somewhat difficult to conceptualize how TLR is assem-
bled in/on the plasma membrane differently in X- and Y-
spermatozoa. According to Chen et al. [354, 355], X- and Y-
sorted bull spermatozoa contain several different RNAs and
proteins. Since the number of spermatozoa used for insemina-
tion was rather small and the X- and Y- sperm separation rate
was not 100%, further validations are needed. For the current
status of X- and Y- sperm separation, readers are referred to
a review by Rahman and Pang [356].

In humans, sexing spermatozoa is very desirable for men
who do not want to transmit their infertility to their sons
due, for example, to severe Y-chromosome aberrations. Will
it be possible to identify and purify viable X-bearing sperma-
tozoa? Today, we do not need millions of spermatozoa for
successful fertilization and pregnancy. Theoretically, a single
good spermatozoon is all we need when the ICSI technique is
used for insemination. Although X-bearing spermatozoa can
be distinguished from Y-bearing ones by fluorescent in situ
hybridization [357] with 100% accuracy, spermatozoa would
all be “dead” by the end of diagnosis. As of today, there is no
other simple, noninvasive method available for identification
and isolation of viable X- and Y- spermatozoa.

26. Conversion of somatic cells to germ
cells—artificial gametes

Some women and men have neither mature germ cells (oocytes
and spermatozoa) nor their precursor cells in ovaries or testes.
There are likely multiple causes for the lack of mature germ
cells in these individuals. During embryogenesis, primordial
germ cells may have failed to enter developing gonads. Genetic
factors such as Y chromosome problems and nongenetic prob-
lems such as diseases, accidents, surgery, medications, toxins,
and radiation can be the causes of the absence of spermatozoa
and oocytes in the testis and ovary, respectively.

At least in the mouse, it is now possible to convert adult
somatic cells to induced pluripotent stem (iPS) cells and
then to mature oocytes and spermatozoa after a series of
extensive gene manipulations [358–361]. To produce human
spermatozoa and oocytes from iPS cells, neither animals nor
their organs, tissues, or even cells should be used. Humans are
emotional creatures. We must put ourselves in the position of
the individual who may be born after such cell manipulations.

What we need for fertilization are haploid male and female
cells with proper genomic imprinting. They need not require
motile tails (for sperm) or a large amount of cytoplasm with
nutrients (for eggs). Someday, it should become possible to
convert adult somatic cells (e.g., skin cells, hematopoietic
stem cells, or hair follicle cells) directly into haploid cells. As
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long as they have a haploid set of chromosomes with proper
male and female genomic imprinting, they could be used as
gametes. The central scientific issue is the induction of meiosis
in somatic cells.

It has been known for a long time that pairing of homol-
ogous chromosomes can occur in adult somatic cells [362–
364]. It has been thought that homologous chromosomes
tend to attract each other and then an extended prophase,
either natural or artificial, leads to the pairing of homologous
chromosomes. According to Adhikari et al [365], prolonged
arrest of oocytes at the prophase of the first meiotic divi-
sion is due to phosphorylation inhibition by cyclin-dependent
kinase 1 (CDK1). If we can arrest mitotically active cells
(e.g., skin stem cells, hair follicle cells, or hematopoietic stem
cells) at the prophase of mitosis for an extended period of
time, they may begin meiotic divisions. When the cells are
freed from the inhibitor, they may initiate meiotic divisions,
culminating in the production of haploid cells. Finding and
manipulating genes such as the mammalian homolog of Mei2,
which controls initiation of meiosis in yeast [366, 367], may
allow somatic cells to initiate meiosis. Of course, erasure
and re-establishment of proper sex-specific genomic imprint-
ing in these cells must take place simultaneously. Recently,
Hirosawa-Takeda et al. [368] and Oura et al. [369] found that
the zinc-finger protein (ZFP541) gene is involved in the initia-
tion of meiosis of male germ cells. Whether activation of such
genes in somatic cells induces meiosis is of academic interest.

27. Transfer and exchange of sperm
chromosomes between two individuals

Transfer and exchange of chromosomes (genes) take place
routinely by conventional animal and plant breeding. Transfer
of chromosomes in the meiotic spindle of an oocyte of an
individual to an enucleated oocyte of another individual has
been done in the monkey [370]. Would it be possible to
exchange a single chromosome (for example, Y chromosome)
between two different human individuals?

Y chromosome microdeletions cause severe oligospermia
in men. Although microsurgical injection of a single sperma-
tozoon into an egg may overcome male sterility, the genetic
defect would be transmitted to their sons. Repairing a defec-
tive Y chromosome or replacing it with a good Y chromosome
would be the better way to solve the problem. In the case of
Y chromosome donation, the Y chromosome of any fertile
man should function. Since the Y chromosome does not carry
genes essential for daily life, the Y chromosome of any other
individuals could be used. However, the Y chromosome of a
fertile man in the family on the father’s side of the recipient
would be preferable. Chromosome sorting procedures that are
currently available [371, 372] seem to be rather harsh. It is
very unlikely that Y chromosomes thus separated can be used
for therapeutic purposes. As the technique improves, however,
removal of a defective Y chromosome and its replacement
with a normal one could become possible.

28. Life without males

There are animals that reproduce just fine without males
(or females, for that matter). Some sharks and lizards are
examples. A Hawaiian lizard, the mourning gecko (Lepido-
dactylus lugubris), reproduces parthenogenetically without
males. Interestingly, infertile males appear from time to time
[373], indicating that this lizard was previously gonochoristic.
Incidentally, these infertile males produce spermatozoa, but

the heads and tails are all separated. It should be noted
that parthenogenetic lizards maintain their genomic diversity
by recombining sister chromosomes, rather than homolo-
gous chromosomes to maintain heterozygosity [374]. In birds,
parthenogenetic development is mostly abortive [375]. In
mammals, “parthenogenesis” is possible only after extensive
manipulation of imprinted genes in eggs [345, 376, 377].
At least two eggs are needed to produce one “gynogenetic”
female. Imprinted genes prevent a normal egg from undergo-
ing parthenogenesis [378].

Most likely, life on the earth started without males. The
gonochoristic (bisexual) mode of reproduction via fertiliza-
tion emerged during evolution and has been maintained in
most animals including mammals. Although unisexual (female
only) reproduction can reproduce offspring quickly, changes
in the environment (including diseases) may wipe out all
individuals of the species due to the lack of genetic diversity.
Almost all animal species on Earth today have bisexual modes
of reproduction (union of sperm and egg), which allows the
mingling of genetic information of two different individuals,
male and female. Even species that reproduce asexually have
methods of sharing genomes to increase genetic diversity
(spores in yeast, plasmid in bacteria, etc.).

In the advent of somatic nucleus transfer technology, it is
now possible to produce offspring without males. All we need
are females. An old male cat, for example, can be cloned
as follows: (1) collect leucocytes of the blood of this cat to
isolate their nuclei, (2) collect recently ovulated oocytes from
a young female cat and remove metaphase II nuclei, (3) inject a
leucocyte nucleus into the enucleated oocyte, and (4) activate
the now diploid egg either chemically or physically to allow
it to begin embryonic development before transfer to the egg-
donor cat. Theoretically, only one young “volunteer” female
cat is needed to clone an old cat. In reality however, because
cloning is so inefficient, more than one young cat would be
needed to clone an old cat as most of manipulated oocytes
and embryos would die.

Theoretically, hundreds and thousands of cloned individ-
uals can be produced from a single male or female. Is this
what we really want to do? Soon after we succeeded in mouse
cloning [379], we had opportunities to discuss “cloning” with
people inside and outside of the University of Hawaii. Most
of our audiences were not scientists. After the question-and-
answer session, I asked the audience: “Ladies, as you see now,
it is possible to have the world without males. Imagine the
world without men. Far less crimes and no more war. What
do you think of that.” Several ladies stood up saying: “No, we
do not want to live in a world without men.” “Why,” I asked?
Answers were unanimous: “ our life would be boring,” “we
need help from them,” “ we do not want to live in the world
without men.” Yes, men, we are all needed.

It is most likely that life on the surface of the Earth began
without males or females. All individuals were essentially
“females.”Modified individuals then appeared to assist repro-
duction of females. They are “males.”

Today, there are currently 29 countries where same-sex
marriage is legal. Certainly many of the couples desire to
have their genetic children. Female–female couples may have
genetic children as already mentioned. How about male–male
couples? It may be possible to covert male A’s somatic cells to
haploid cells with female genomic imprinting. Then, put the
haploid nucleus (of male A) and one normal spermatozoon (of
male B) in a donated mature oocyte from which the nucleus
has been removed previously. This egg would develop into

Downloaded From: https://complete.bioone.org/journals/Biology-of-Reproduction on 07 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use



R. Yanagimachi, 2022, Vol. 106, No. 4 665

an offspring with genomic information from two males, A
and B plus the mitochondria genome from the oocyte donor.
The eggs receiving two Y chromosomes (from males A and
B) would not develop into live offspring. Embryos without X
chromosome would not develop to livable offspring as this
chromosome carries many genes necessary for a diverse range
of cellular functions. We are in the era of what we can do and
what we should not do.

29. Human and organ cloning

Soon after we published a paper describing the first cloned
mice [379], we received many telephone calls from news
reporters. Their primary interest was not mouse cloning, but
human cloning. “Will it be possible to clone a human now?
If not, how soon?” Ever since the birth of “Dolly”—the first
cloned sheep—, countless papers were published about human
cloning. Human cloning is indeed a popular, yet very contro-
versial subject. While cloning pet animals (cat and dog) met
little resistance from the general public, cloning farm animals
(e.g., cattle) as foods provoked a considerable controversy.
“Fear of the unknown” is natural. In my opinion, cloning
of farm animals should be used in a restricted manner. For
example, the production of several “superior” stud animals is
reasonable. However, the exclusive use of cloning technology
for the rapid production of a huge number of “superior”
animals would not be advisable because sudden changes in
the environment (including disease) may wipe out all of the
animals due to the lack of genetic diversity.

I once received a telephone call from a man who lost his
only son by an accident. He and his wife desperately wanted
to revive their son by cloning. I told him that I am not a
medical doctor, and the current cloning technology is not
ready for practical use for humans. I fully understood the
couple’s desire. Perhaps, cloning is the only way to grant their
wish. But should their wish be granted? This is a question not
just for scientists, but for all of society to ponder.

No one is perfect. All of us want our children healthier and
happier than ourselves. We see better features and abilities in
our partners and wish to transmit these to our children. Sexual
reproduction makes this possible. This is what gonochoristic
(bisexual) reproduction all about. Cloning would preclude
such betterment in our children.

There may be someone who thinks they are perfect and
wants to be born again with the same genetic constitution.
There is nothing wrong with their idea. There is no reason
to refute their wishes. However, whether the person thus
born is pleased or not is a different story. Physical and social
environments their cloned “children” face would obviously
be very much different from those of their “parents.” There is
no guarantee that cloned children will grow in the way their
“parents” and society anticipate. The happiness of a person is
of prime importance, regardless of the way they are born.

Unlike reproductive cloning, therapeutic use of cloning
technology has been accepted almost unanimously by the
medical community and the general public. Conversion of
iPS cells to a particular type of cell (e.g., epithelial, muscu-
lar, nervous, endocrine) could be done relatively easily, but
whether these cells can survive and function in the environ-
ment where the cells of our interest died or malfunctioned
is largely unknown. The production of tissues from iPS cells
would be difficult because tissues are made of many different
types of cells. The production of organs from iPS cells would
be even more difficult because organs are made of many
different types of tissue cells. iPS cells can be used to construct

microscopic organoids (e.g., kidney organoids [380, 381], but
it is very doubtful if they can develop in vitro into large
transplantable organs with properly developed blood vessels.

My proposal is as follows. Today, numerous infertility clin-
ics store thousands of human embryos (mostly in blastocyst
stage) that are kept frozen for possible transplantation to
their own mothers. On request from parents, embryos are
defrosted and transferred to mothers. Not all of the stored
embryos have this fate. On the contrary, most embryos are
defrosted sooner or later without transfer into mothers and
die. With the prior consent of parents of frozen embryos,
the inner cell mass cells can be removed completely from a
blastocyst to produce ICM cell-less blastocyst. Meanwhile,
somatic cells of a patient who desire a new organ are first
converted to iPS cells. They are further manipulated such that
their descendant cells are able to participate in the formation
of all organs but head and limbs. When these altered iPS cells
are transferred to the inner cell mass-less blastocyst previously
described, they would develop to a full-term “fetus” without
head and limbs. All organs of this “fetus” would perfectly
match to the person who provided the original cells. Organs
thus transplanted to the patient would be far smaller than
adult organ but would grow rapidly. The original organs that
were not functioning well could be removed at a later time.
It is very important to emphasize here that organs produced
this way match only to the original cell donor, and no one
else. Today, we see so many men and women hooked up to a
dialysis machine endlessly (commonly 3 times a week, for 4 h
each time) for the rest of their lives. If we are able to produce
functional organs (e.g., kidney, heart, pancreas, . . . ) directly
from iPS cells, it is ideal, of course, but it is a very remote
possibility. Even the production of an “artificial uterus” that
supports development of a blastocyst to term fetus is also
currently a remote possibility. Whether embryos can develop
to fully developed “trunks” without heads and limbs must
be determined first using various animal models even though
head-less terminal fetuses of the mouse were obtained by gene
manipulation [382].

Conclusion

Although tremendous advances have been made in tech-
nologies enabling us to study mammalian fertilization, many
questions remain about how gametes function, how they meet
each other in the female reproductive tract, how sperm pass
through the cumulus and zona pellucida to fuse with the
oocyte plasma membrane, and how male and female pronuclei
are formed and fuse. Current technologies are already helping
us to understand these processes, yet we need more technologi-
cal development in imaging, gene manipulation, identification
of biological molecules, and more fully understanding the pro-
cesses of fertilization to use our knowledge for the treatment
of infertility and the development of better contraceptives.
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