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Abstract

Free amino acids are present in the natural environment of the preimplantation embryo, and their availability can influence early embryo
development. Glutamic acid is one of the amino acids with the highest concentrations in female reproductive fluids, and we investigated whether
glutamic acid/glutamate can affect preimplantation embryo development by acting through cell membrane receptors. Using reverse transcription-
polymerase chain reaction, we detected 15 ionotropic glutamate receptor transcripts and 8 metabotropic glutamate receptor transcripts in mouse
ovulated oocytes and/or in vivo developed blastocysts. Using immunohistochemistry, we detected the expression of two α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptor subunits, three kainate receptor subunits, and member 5 metabotropic glutamate receptor
protein in blastocysts. Extracellular concentrations of glutamic acid starting at 5 mM impaired mouse blastocyst development, and this fact may
be of great practical importance since glutamic acid and its salts (mainly monosodium glutamate) are widely used as food additives. Experiments
with glutamate receptor agonists (in combination with gene expression analysis) revealed that specific AMPA receptors (formed from glutamate
receptor, ionotropic, AMPA3 [GRIA3] and/or glutamate receptor, ionotropic, AMPA4 [GRIA4] subunits), kainate receptors (formed from glutamate
receptor, ionotropic, kainate 3 [GRIK3] and glutamate receptor, ionotropic, kainate 4 [GRIK4] or glutamate receptor, ionotropic, kainate 5 [GRIK5]
subunits), and member 5 metabotropic glutamate receptor (GRM5) were involved in this effect. The glutamic acid-induced effects were prevented
or reduced by pretreatment of blastocysts with AMPA, kainate, and GRM5 receptor antagonists, further confirming the involvement of these
receptor types. Our results show that glutamic acid can act as a signaling molecule in preimplantation embryos, exerting its effects through the
activation of cell membrane receptors.

Summary Sentence
Several types of glutamate receptors are expressed in mouse oocytes and blastocysts, and extracellular concentrations of glutamic acid at 5
mM can inhibit blastocyst development by activating glutamate receptors.

Graphical Abstract
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Introduction

Free amino acids are present in the natural environment of
the preimplantation embryo, and several transport systems
are used to deliver amino acids into embryonic cells [1–3].
Glutamic acid is one of the amino acids with the highest
concentrations in female reproductive fluids, and its concen-
tration has been shown to be in the range of 0.05–5.5 mM
in the oviductal fluid of various mammalian species, includ-
ing humans [4–11]. Glutamic acid (L-Glu) is a “nonessen-
tial” amino acid (classified according to nutritional require-
ments of several cell lines [12]) and exists in its ionic form
under physiological conditions. Since glutamate salts (includ-
ing monosodium glutamate, a widely used food additive)
dissociate in aqueous solutions, the term glutamate can be
used for both glutamate salts and glutamic acid [13].

In addition to their role as substrates for proteosynthe-
sis, amino acids may have many other functions in cells of
preimplantation embryos [1, 2]. Specifically, glutamic acid can
serve as an energy source, an intermediate for transamina-
tion reactions, or as a precursor for the synthesis of several
important molecules (such as glutathione, the main intra-
cellular antioxidant [14–16]). Moreover, glutamic acid can
act as a signaling molecule interacting with several types of
cell membrane receptors in adult tissues. Glutamic acid is
the main excitatory neurotransmitter in the central nervous
system of mammals, and can also activate specific recep-
tors in non-neural cell types [16, 17]. Glutamate-binding
receptors are divided into two families: ionotropic (iGluR)
and metabotropic (mGluR). The ionotropic receptor fam-
ily includes the N-methyl-D-aspartate (NMDA), α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and
kainate receptor subfamilies (so named according to selec-
tive synthetic agonists). Ionotropic glutamate receptors are
ligand-gated ion channels composed of four subunits, and
allow cation influx upon glutamate binding. Seven NMDA
receptor subunits, four AMPA receptor subunits, and five
kainate receptor subunits have been identified in mammals
(see Figure 1). Metabotropic glutamate receptors are hepta-
helical membrane proteins that are further categorized into
group I (with two members), group II (with two members),
and group III (with four members, see Figure 2). Metabotropic
glutamate receptors initiate signaling through interaction with
guanosine-5′-triphosphate-binding proteins and activate vari-
ous signaling cascades or cation influx. Glutamate signaling in
the cell can be very complex because several types of glutamate
receptors with interacting signaling pathways may be involved
[18–21].

Several studies have demonstrated the beneficial effects of
supplementing preimplantation embryo culture media with
mixtures containing “nonessential" amino acids (including
glutamic acid) at relatively low doses [1, 22]. It is generally
believed that the effects of amino acids in the external environ-
ment on preimplantation embryo development are mediated
by the transport of amino acids into embryonic cells [23]. In
our study, we examined whether activation of cell membrane
receptors may be involved in the effects of glutamate on
preimplantation embryos. We firstly analyzed the expression
of glutamate receptors in mouse ovulated oocytes and in vivo
developed blastocysts, and then exposed blastocysts to natural
and synthetic ligands of glutamate receptors. We analyzed the
exposed embryos and, using specific agonist and antagonist
molecules, identified receptor types involved in the observed
cell responses.

Materials and methods

Animals, collection of in vivo developed oocytes,
and blastocysts

All animal experiments were performed in accordance with
the ethical principles under the supervision of the Ethics Com-
mittee for Animal Experimentation at the Institute of Animal
Physiology and approved by the State Veterinary and Food
Administration of the Slovak Republic in strict accordance
with Slovak legislation based on the EU Directive 2010/63/EU
on the protection of animals used for experimental and other
scientific purposes.

All experiments were performed with outbred ICR (CD-1
IGS) mice (Velaz, Prague, Czech Republic). The animals were
housed in the animal facility at the Institute of Animal Physi-
ology, Kosice, Slovakia (authorization No. SK UCH 01018) in
plexiglass cages, kept under standard conditions (temperature
22 ± 2◦C, humidity 65 ± 5%, 12:12-h light-dark cycle with
lights on 06:00 a.m.) with free access to a standard pellet
diet and water. Adult female mice (5–6 weeks old) were syn-
chronized with eCG (pregnant mare’s serum gonadotropin,
5 IU ip; Folligon, Intervet International, Boxmeer, Holland)
and hCG (human chorionic gonadotropin, 4 IU ip; Pregnyl,
Organon, Oss, Holland; 47 h later). Twelve to fourteen hours
after hCG administration, the mice were killed by cervical
dislocation, and unfertilized oocytes were isolated by flushing
the oviduct using an in-house flushing-holding medium (FHM
[24]) containing 1% bovine serum albumin (BSA; Sigma-
Aldrich). To obtain preimplantation embryos at the blastocyst
stage, females treated with eCG and hCG were mated with
males of the same strain overnight. Successful mating was
confirmed by the identification of a vaginal plug the next
morning. Fertilized dams were killed by cervical dislocation
and subjected to embryo isolation by flushing the uterus using
the FHM with BSA at 96 h post-hCG and to morphologi-
cal classification using stereomicroscopy (Nikon SMZ 745T,
Nikon, Tokyo, Japan). Oocytes and blastocysts were washed
in several drops of FHM with BSA and pooled. Cumulus cells
were removed with 0.1% hyaluronidase (Sevac, Prague, Czech
Republic).

Reverse transcription-polymerase chain reaction
and transcript relative quantification

Total ribonucleic acid (RNA) was extracted from batches
of 590–610 unfertilized mouse oocytes or blastocysts (the
number of oocytes/blastocysts in each pool was exactly deter-
mined), and from mouse brain (positive tissue control). TRIzol
Reagent (Invitrogen Life Technologies, Karlsruhe, Germany)
was used for the extraction (according to the manufacturer’s
instructions). Complementary DNA was synthesized (after the
genomic DNA elimination step) using the RT2 First Strand
Kit (Qiagen, Valencia, CA). For both oocytes and blastocysts,
three independent RNA isolates were used to prepare cDNA
samples. To check for the presence of genomic DNA contam-
ination in the RNA preparations, reverse transcriptase (RT)
negative controls (no RT in the cDNA synthesis reaction)
were carried out in parallel using half of each RNA sample
(thus two cDNA preparations, “RT+" and “RT−," were
prepared from each RNA sample). The cDNA preparations
were diluted in an appropriate amount of 10 mM Tris (pH
8.3) so that 1 μl of the cDNA corresponded theoretically to
2.5 embryo/oocyte equivalents.

Downloaded From: https://complete.bioone.org/journals/Biology-of-Reproduction on 09 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use



918 Glutamate receptors in preimplantation embryos, 2022, Vol. 107, No. 4

Figure 1. Transcripts encoding ionotropic glutamate receptors are expressed in mouse blastocysts and oocytes. Subunits of ionotropic glutamate
receptors are listed in the table on the left. The most frequently used common names of subunits are given in parentheses. Mouse gene symbols are
used (human gene symbols are the same but written with all letters capitalized, e.g., GRIA1). In transcripts which were consistently expressed in both
blastocysts and oocytes, fold regulation values (“+" means upregulation and “-" means downregulation in blastocysts compared to oocytes) and
corresponding P-values are shown. Transcripts were detected by reverse transcription-polymerase chain reaction (RT-PCR) and representative agarose
gels with separated PCR products are shown in the panels on the right. Lanes: Gria1, Glutamate receptor, ionotropic, AMPA1; Gria2, Glutamate
receptor, ionotropic, AMPA2; Gria3, Glutamate receptor, ionotropic, AMPA3; Gria4, Glutamate receptor, ionotropic, AMPA4; Grik1, Glutamate receptor,
ionotropic, kainate 1; Grik2, Glutamate receptor, ionotropic, kainate 2; Grik3, Glutamate receptor, ionotropic, kainate 3; Grik4, Glutamate receptor,
ionotropic, kainate 4; Grik5, Glutamate receptor, ionotropic, kainate 5; Grin1, Glutamate receptor, ionotropic, NMDA1; Grin3a, Glutamate receptor,
ionotropic, NMDA3A; Grin3b, Glutamate receptor, ionotropic, NMDA3B; Grin2a, Glutamate receptor, ionotropic, NMDA2A; Grin2b, Glutamate receptor,
ionotropic, NMDA2B; Grin2c, Glutamate receptor, ionotropic, NMDA2C; Grin2d , Glutamate receptor, ionotropic, NMDA2D; MW, molecular weight
markers; (A) positive control tissue; (B) ovulated oocytes; (C) blastocysts. The MWs in base pairs (bp) are indicated to the right of the panels. ∗Primers
for Grik3, Grin2d , Grin3a, and Grin3b subunits were not included in the Mouse GABA & Glutamate RT2 profiler PCR array, and commercial primer sets
from Qiagen were used (see Materials and methods). Delta receptors (formed from delta 1 and delta 2 subunits), classified by sequence homology as
ionotropic glutamate receptors, do not bind glutamate, and were not investigated in this study.

Polymerase chain reaction (PCR) analysis of glutamate
receptor transcripts was performed using the Mouse GABA
& Glutamate RT2 profiler PCR array (Qiagen, Cat. No.
PAMM-152ZF) containing oligonucleotide primers for
amplification of 20 glutamate receptor subunits/types. Four
glutamate receptor subunits that were not included in the
PCR array were analyzed in separate PCR reactions using

commercial primer sets from Qiagen (product numbers:
PPM04259A, PPM04892A, PPM34762E, and PPM34342A,
respectively). PCR amplifications were performed in a
Light Cycler 480 real-time PCR system (Roche Diagnostics,
Rotkreuz, Switzerland). The reactions were carried out in
25 μl volumes containing 1 μl of the cDNA (corresponding
theoretically to 2.5 embryo/oocyte equivalents) and SYBR
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Figure 2. Transcripts encoding metabotropic glutamate receptors are expressed in mouse blastocysts and oocytes. Metabotropic glutamate receptor
types are listed in the tables on the left. In transcripts which were consistently expressed in both blastocysts and oocytes, fold regulation values (“+"
means upregulation and “−" means downregulation in blastocysts compared to oocytes) and corresponding P-values are shown. Transcripts were
detected by RT-PCR and representative agarose gels with separated PCR products are shown in the panels on the right. Lanes: Grm1, Glutamate
receptor, metabotropic 1; Grm2, Glutamate receptor, metabotropic 2; Grm3, Glutamate receptor, metabotropic 3; Grm4, Glutamate receptor,
metabotropic 4; Grm5, Glutamate receptor, metabotropic 5; Grm6, Glutamate receptor, metabotropic 6; Grm7, Glutamate receptor, metabotropic 7;
Grm8, Glutamate receptor, metabotropic 8; MW, molecular weight markers; A, positive control tissue; B, ovulated oocytes; C, blastocysts. The MWs in
base pairs (bp) are indicated to the right of the panels. ∗Primers for Grm5 receptor type were designed in this study.

Green qPCR mastermix (Qiagen). An initial step at 95◦C
for 10 min was followed by 45 cycles at 95◦C for 15 s
and 60◦C for 60 s. Amplification specificity was assessed
with melting curve analysis and agarose gel electrophoresis
(see later). The experiment was performed thrice and the
results were analyzed by comparative ��Ct method using
the web-based data analysis software provided by the PCR
array manufacturer (Qiagen; software available at https://
dataanalysis2.qiagen.com/pcr). The fold change in gene
expression (transcript up- or downregulation) in blastocysts
compared with oocytes was calculated. Since the primers
for the Grm5 receptor type included in the PCR array
did not work consistently, we designed our own primers.
Amplification reactions contained 0.5 μM of each Grm5
primer (5′- TTCTTTCCTTCCCTGGTCCCTC-3′ and 5′-
ACACAACACTCACTACCCGTTT-3′), 50 mM KCl, 10 mM
Tris–HCl (pH 8.3), 2 mM MgCl2, 0.2 mM dNTPs, and
0.02 U/ml platinum Taq DNA polymerase (Invitrogen Life
Technologies).

PCR products were analyzed using electrophoresis on 3%
agarose gels stained with GelGreen (Biotium, Hayward, CA,
USA). A 20 bp DNA ladder (Jena Bioscience, Jena, Germany)
was used as marker. PCR products were visualized with a
Fusion FX7 imaging system (Vilber Lourmat, France), and
the size of DNA bands (PCR products) was determined with
Bio1D analysis software (Vilber Lourmat).

Immunostaining

The zona pellucida of the blastocysts was removed with
0.5% pronase in FHM at 37◦C. Zona-free embryos were
fixed in 4% paraformaldehyde. Free aldehyde groups were
blocked with 0.3 M glycine (Merck, Darmstadt, Germany),
and embryos were permeabilized in phosphate-buffered saline
(PBS)/BSA/SAP (PBS containing BSA and 0.5% saponin;

Sigma-Aldrich, Munich, Germany). Tris buffer (9.0 pH) was
used for antigen retrieval. Nonspecific immunoreactions
were blocked with blocking buffer (0.05% saponin in
PBS containing 10% normal goat serum (Santa Cruz
Biotechnology), 0.3 M glycine (Merck, Darmstadt, Germany),
and 1% BSA (Sigma-Aldrich, Munich, Germany). Embryos
were incubated with primary rabbit polyclonal antibodies
against selected glutamate receptors in the blocking buffer
at 4◦C overnight. A secondary antibody coupled with Alexa
Fluor 488 (Alexa Fluor 488 goat anti-rabbit IgG, Invitrogen
Life Technologies) was used to visualize the primary antibody.
Cell nuclei were stained with Hoechst 33342 in PBS/BSA (10
μg/ml; Sigma-Aldrich, Germany). Afterward, embryos were
mounted in Vectashield antifade reagent (Vector Laboratories,
Burlingame, CA) on glass slides, sealed with coverslips, and
observed using a confocal microscope (Leica TCS SPE, Leica,
Wetzlar, Germany). Negative control groups of oocytes and
embryos were incubated without the primary antibody or
without the secondary antibody, or with rabbit gamma
globulin (Rabbit Gamma globulin Control, Invitrogen, Cat#
31887).

Primary antibodies used in the study

Anti-mGluR5 Antibody (Alomone Labs, Cat# AGC-007, dilu-
tion 1:50), Anti-GRIK3 (GluK3) Antibody (Alomone Labs,
Cat# AGC-040, dilution 1:100), Anti-GRIK4 (KA1) Antibody
(Alomone Labs, Cat# AGC-041, dilution 1:50), Anti-GRIK5
(GluK5) Antibody (Alomone Labs, Cat# AGC-042, dilution
1:100), GRIA3 Antibody (LifeSpan Biosciences, Cat# LS-
C331307, dilution 1:50), and Anti-GluR4 (GluA4) Antibody
(Alomone Labs, Cat# AGC-019, dilution 1:50).

Embryo culture and morphological evaluation

Mouse embryos at the blastocyst stage were randomly divided
into several subgroups and cultured in vitro under standard
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conditions (humidified atmosphere with 5% CO2 and 37◦C)
in 400 μl of EmbryoMax KSOM powdered mouse embryo
medium (Millipore, UK, Cat# MR-020P) for 24 h with/with-
out the presence of

1. l-Glutamic acid (Sigma-Aldrich) at 10 mM, 5 mM, and
2 mM concentrations

2. Specific ionotropic glutamate receptor agonists: NMDA
(N-Methyl-D-aspartic acid, ab120052; Abcam UK) at
5 mM concentration, AMPA [(S)-α-amino-3-hydroxy-
5-methylisoxazole-4-propionic acid; ab120005, Abcam
UK] at 5 mM and 0.3 mM concentrations and kainic
acid (KA) [(2S,3S,4S)-3-(carboxymethyl)-4-(prop-1-en-
2-yl)pyrrolidine-2-carboxylic acid; ab120100; Abcam
UK] at 5 mM, 2 mM, 1 mM, 0.5 mM, and 0.3 mM
concentrations

3. Specific metabotropic glutamate receptor (mGluR) ago-
nists: (S)-3,5-DHPG [(S)-3,5-Dihydroxyphenylglycine,
Group I mGluR agonist; ab120007, Abcam UK] at 5
mM and 0.1 mM concentrations, LY 379268 [(1R,4R,5S,
6R)-4-amino-2-oxabicyclo(3.1.0)hexane-4,6-dicarboxylic
acid, Group II mGluR agonist; ab120196, Abcam UK]
at 5 mM concentration and L-AP4 [L-(+)-2-Amino-
4-phosphonobutyric acid, Group III mGluR agonist;
ab120002, Abcam UK] at 5 mM concentration

4. A mixture of AMPA and kainate receptor antagonist
CNQX (disodium salt; 1,2,3,4-tetrahydro-7-nitro-2,3-
dioxoquinoxaline-6-carbonitrile disodium; ab120044,
Abcam UK) and GRM5 receptor antagonist MPEP
[hydrochloride; 2-Methyl-6-(phenylethynyl)pyridine
hydrochloride; ab120008, Abcam UK] at 0.3 mM and
0.01 mM final concentrations, respectively; blastocysts
were incubated in this antagonist mixture for 20 min
prior to the addition of L-glutamic acid (to 5 mM final
concentration).

All compounds used in this study were dissolved to
the required concentration in EmbryoMax KSOM culture
medium. The control subgroup of blastocysts was cultured in
EmbryoMax KSOM culture medium alone.

After 24 h of incubation, embryos were fixed in 4%
paraformaldehyde (Merck) and permeabilized with 0.5%
Triton X-100 (Sigma Aldrich). Blastocysts were then incu-
bated with TUNEL assay reagents (terminal deoxynucleotidyl
transferase dUTP nick end labeling) using the DeadEnd
Fluorometric TUNEL System (Promega Corporation, Madi-
son, USA) for 1 h at 37◦C in the dark, to evaluate cell
death incidence. To distinguish between trophectoderm (TE)
and inner cell mass (ICM) cell lineages, CDX2 (caudal
type homeobox 2) staining was performed. Nonspecific
immunoreactions were blocked using 10% normal goat
serum (Santa Cruz Biotechnology, USA) for 2 h at room
temperature. After blocking, the mouse blastocysts were
incubated with primary antibody (rabbit anti-mouse CDX2
polyclonal antibody; Cell Signaling Technology, Danvers, MA,
USA) diluted in blocking solution at 4◦C overnight. The next
day, the blastocysts were washed in PBS/BSA and incubated
with a secondary antibody (Cy 3-conjugated goat anti-rabbit
IgG, Jackson ImmunoResearch Laboratories, West Grove, PA,
USA). Finally, to evaluate the total number of nuclei and the
nuclear morphology, the blastocysts were counterstained with

Hoechst 33342 DNA staining (Sigma Aldrich) for 5 min at
room temperature, mounted on glass slides using Vectashield
(Vector Laboratories, Burlingame, CA, USA) and observed
at magnification X400 using a fluorescence microscope
(BX51; Olympus, Tokyo, Japan). Microphotographs of 3–
5 optical sections of each blastocyst (depending on embryo
size) were obtained using a CCD camera (DP72; Olympus)
and respective software (QuickPHOTO MICRO 2.3). The
total number of blastomeres in the blastocyst was counted
manually using ImageJ 1.23y software (National Institutes of
Health, USA) upgraded with the Point Picker plugin allowing
to pick, stack, and save nuclei located at specific coordinates
in an image.

According to the nuclear morphology and the presence
of specific DNA fragmentation in the nucleoplasm, embry-
onic cells were classified as normal (without morphological
changes in nuclei, without TUNEL labeling) or dead (showing
at least one of the following features: fragmented or con-
densed nucleus, positive TUNEL labeling). In each blastocyst,
the percentage of dead cells was calculated as the number of
dead cells relative to the total number of blastomeres in the
blastocyst.

Statistical analysis

Statistical analysis was performed using GraphPad Prism
software (GraphPad Software, Inc., La Jolla, CA). One-way
analysis of variance followed by the Tukey post hoc test
(analysis of 3–5 groups) and unpaired Student t-test (analysis
of 2 groups) were used to compare the blastocyst cell number
and the proportion of dead cells in the blastocysts. Differences
with P < 0.05 were considered significant.

Results

Transcripts encoding glutamate receptors are
expressed in mouse blastocysts and oocytes

We detected 15 ionotropic glutamate receptor transcripts
and 8 metabotropic glutamate receptor transcripts in mouse
ovulated oocytes and/or in vivo developed blastocysts
(Figures 1 and 2). Gria2, Grik2, Grin2a, Grin2b, Grm1,
and Grm7 transcripts were detected in oocytes but not in
blastocysts. In contrast, Gria3, Grin1, Grm5, and Grm6
transcripts were detected in blastocysts but not in oocytes.
Grik1 transcript was detected in all three oocyte samples
but only in one blastocyst sample. Other transcripts (Gria4,
Grik3, Grik4, Grik5, Grin2c, Grin2d, Grin3a, Grin3b, Grm2,
Grm3, Grm4, and Grm8) were consistently detected in both
oocytes and blastocysts, and Gria4, Grm2, Grm4, and Grm8
transcripts were detected in much larger quantities in oocytes
than in blastocysts (241-, 334-, 45-, and 33-fold differences
were found, respectively). In contrast, the amount of Grik3
transcript was about 39 times higher in blastocysts than in
oocytes. No specific PCR products were detected in blank
reactions. RT-control reactions for three receptors (Grik5
and Grm4 in oocytes and Grm6 in blastocysts) produced
specific PCR products, however, their amounts were minimal
compared to the corresponding RT+ reactions. No specific
PCR products were detected in other RT-control reactions
(data not shown).
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Figure 3. Glutamate receptor proteins are expressed in mouse blastocysts. Glutamate receptor subunits/types were detected by immunofluorescence.
Representative images are shown. Optical sections were observed via CLSM. Cell nuclei were stained with Hoechst 33342 (blue staining, A columns).
Embryos were incubated with primary antibodies against the glutamate receptor subunits/types and with a secondary antibody labeled with Alexa Fluor
488 (green staining, B columns); C columns, merged images. For negative controls, see Supplementary Figure S1. Scale bars, 10 μm.

Glutamate receptor proteins are expressed in
mouse blastocysts

We examined the expression of GRIA3, GRIA4, GRIK3,
GRIK4, GRIK5, and GRM5 proteins in mouse blastocysts
using specific primary antibodies and fluorescently labeled
secondary antibodies. The selection of proteins for immuno-
histochemical analysis was made on the basis of two criteria:
(1) proteins had to belong to the receptor types whose agonists
produced an effect in our receptor functional studies (see later)
and (2) the corresponding transcripts had to be detected in
blastocysts. For AMPA receptor subunits, GRIA4 protein was
detected in similar amounts in TE and ICM cells but the
signal for GRIA3 protein was slightly stronger in ICM than
in TE cells. For kainate receptor subunits, all three examined
proteins (GRIK3, GRIK4, and GRIK5) were detected in both
TE and ICM cells. GRM5 protein was detected in both blas-
tocyst cell lineages (Figure 3). The fluorescence signal was in
some cases (e.g., GRIK5, GRIA3, and GRIA4) strongest at the
cell periphery, suggesting localization of receptors in the cell
membrane. The specificity of the signal was confirmed using
several negative controls. The intensity of the immunostaining
signal was significantly reduced in controls incubated with
rabbit gamma globulin (instead of the primary antibody)
and in controls incubated without the primary antibody or
without the primary and the secondary antibody (see Supple-
mentary Figure S1).

Glutamate can impair blastocyst development

To identify which glutamate receptor types are functional in
mouse blastocysts, we stimulated the embryos with increasing
concentrations of natural ligand (L-glutamic acid) and with
receptor type-specific synthetic ligands in our functional stud-
ies. In the first experiment, mouse blastocysts were cultured

in a medium supplemented with l-glutamic acid at 2 mM, 5
mM, and 10 mM concentrations. Blastocysts were cultured
in this medium for only 24 h to reduce the accumulation of
ammonium in the culture medium. No significant effects were
found in blastocysts treated with 2 mM glutamate. Higher
glutamate concentrations significantly decreased cell numbers
in blastocysts, and both ICM and TE cells were affected (the
reduction was more pronounced in ICM cells than in TE cells:
the mean cell number was about 25% lower in ICM cells and
about 10% lower in TE cells in glutamate-treated blastocysts
in comparison with control blastocysts). Blastocysts exposed
to 5 mM and 10 mM glutamate showed significantly higher
proportions of dead cells than control blastocysts (Figure 4).

Specific ionotropic glutamate receptor agonists
interfere with blastocyst development

Since 5 mM L-glutamic acid produced significant effects on
blastocysts, we used a 5 mM concentration of specific agonists
in the first set of experiments. Alpha-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) and kainic acid
(KA) significantly decreased cell numbers in blastocysts. A
separate examination of TE and ICM cell lineages showed
that both agonists influenced mainly TE cells. Analysis of
dead cell incidence showed that blastocysts exposed to 5
mM AMPA or KA had significantly higher proportions of
dead cells than control blastocysts. No significant effects were
found in blastocysts treated with 5 mM NMDA (Figure 5A).

To verify that lower agonist concentrations were effective,
we used AMPA at 300 μM and KA at 1 mM final concentra-
tions in the second set of experiments (these concentrations
were chosen according to the information in published exper-
iments [25–28]). A relatively high concentration of KA had
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Figure 4. Glutamic acid can impair blastocyst development. Cell numbers and proportions of dead cells in blastocysts after incubation with L-glutamic
acid. The blastocysts were incubated in the presence of the indicated concentrations of L-glutamic acid (GlAc) for 24 h. TE, trophectoderm, ICM, inner
cell mass. Numbers of blastocysts in the groups (n): Control, n = 44; GlAc 2 mM, n = 51; GlAc 5 mM, n = 48; GlAc 10 mM, n = 47. The values are
arithmetical mean + SEM. Statistical significance of differences: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

Figure 5. Specific ionotropic glutamate receptor agonists interfere with blastocyst development. (A) Cell numbers and proportions of dead cells in
blastocysts after incubation with agonists of ionotropic glutamate receptors. The blastocysts were incubated in the presence of 5 mM NMDA, 5 mM
AMPA, and 5 mM kainic acid for 24 h. Numbers of blastocysts in the groups (n): Control, n = 61; NMDA, n = 35; AMPA, n = 78; kainic acid, n = 45. (B, C)
Cell numbers and proportions of dead cells in blastocysts after incubation with lowered concentrations of AMPA (B) and kainic acid (C). The blastocysts
were incubated in the presence of 300 μM AMPA and 1 mM kainic acid for 24 h. Numbers of blastocysts in the groups (n): Control (for AMPA group), n
= 59; AMPA, n = 63; control (for kainic acid group), n = 32; kainic acid, n = 23. TE, trophectoderm, ICM, inner cell mass. The values are arithmetical
mean + SEM. Statistical significance of differences: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

to be used since concentrations below 1 mM were not effec-
tive (see Supplementary Figure S2). Treatment with 300 μM
AMPA and 1 mM KA significantly decreased cell numbers
and increased proportions of dead cells (Figures 5B and C)
in blastocysts. A comparison of the effect of 5 mM and 300
μM AMPA showed that 5 mM AMPA only affected TE cells,
whereas 300 μM AMPA was effective mainly in ICM cells (see
Figure 5 and Supplementary Figure S3).

Group I metabotropic glutamate receptor agonist
interferes with blastocyst development
Mouse blastocysts were cultured for 24 h in a medium
supplemented with specific metabotropic glutamate receptor
agonists in 5 mM concentrations. (S)-3,5-DHPG (group I
agonist), LY 379268 (group II agonist), and L-AP4 (group
III agonist) were used. Treatment with 5 mM (S)-3,5-DHPG
(group I agonist) induced strong blastocyst damage, with
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Figure 6. Group I metabotropic glutamate receptor agonist interferes with blastocyst development. (A) Cell numbers and proportions of dead cells in
blastocysts after incubation with agonists of metabotropic glutamate receptors. The blastocysts were incubated in the presence of 5 mM (S)-3,5-DHPG
(group I agonist, “Gr I”), 5 mM LY 379268 (group II agonist, “GR II”), and 5 mM L-AP4 (group III agonist, “Gr III”) for 24 h. Numbers of blastocysts in the
groups (n): Control, n = 65; (S)-3,5-DHPG, n = 19; LY 379268, n = 39; L-AP4, n = 47. (B) Cell numbers and proportions of dead cells in blastocysts after
incubation with lowered concentration of (S)-3,5-DHPG (metabotropic group I agonist). The blastocysts were incubated in the presence of 100 μM
(S)-3,5-DHPG for 24 h. Number of blastocysts in the groups (n): Control, n = 37; (S)-3,5-DHPG, n = 41. TE, trophectoderm, ICM, inner cell mass. The
values are arithmetical mean + SEM. Statistical significance of differences: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

81% of the embryos showing collapsed blastocoele cavity
and massive cellular shrinkage. In the remaining blastocysts,
we found significantly lower cell numbers and significantly
higher proportions of dead cells than in control blastocysts
(Figure 6A). We found no significant changes in blastocysts
treated with 5 mM LY 379268 (group II agonist) and L-AP4
(group III agonist; Figure 6A).

To verify the effects of (S)-3,5-DHPG agonist on blas-
tocysts at a lower concentration, we used 100μM (S)-3,5-
DHPG in the following experiment (this concentration was
chosen according to the information in published experiments
[29–31]). No severe damage to blastocysts was found after
treatment with the lower (S)-3,5-DHPG dose. We found sig-
nificantly lower cell numbers and higher proportions of dead
cells in blastocysts treated with 100 μM (S)-3,5-DHPG than
in control blastocysts (Figure 6B). Comparison of the effect
of 5 mM and 100 μM (S)-3,5-DHPG showed that 5 mM (S)-
3,5-DHPG affected both cell lineages, while 100 μM (S)-3,5-
DHPG was effective mainly in ICM cells (see Figure 6 and
Supplementary Figure S3).

Glutamate effects are blocked with AMPA/kainate
and GRM5 receptor antagonists

In the final experiment, mouse blastocysts were cultured
for 24 h in a medium supplemented with L-glutamic acid
(at 5 mM final concentration) and compared with blasto-
cysts incubated in the presence of AMPA/kainate and GRM5

receptor antagonists (mix of CNQX and MPEP at 300 μM
and 10 μM final concentrations, respectively) prior to l-
glutamic acid exposure. Glutamic acid decreased cell numbers
in blastocysts (both ICM and TE cells were affected) and this
effect was blocked by 20 min of blastocyst pretreatment with
AMPA/kainate and GRM5 receptor antagonists. Similarly, the
increased incidence of cell death induced by glutamic acid was
blocked by the antagonists (Figure 7).

Discussion

We examined messenger RNA (mRNA) for all 16 subunits
of ionotropic glutamate binding receptors and 8 types
of metabotropic glutamate binding receptors in mouse
blastocysts and ovulated oocytes and found several expression
profiles. Expression in oocytes but not in blastocysts was
found in six glutamate receptor transcripts, indicating that
these maternal transcripts are degraded during preimplanta-
tion development. In contrast, four transcripts were found in
blastocysts but not in oocytes, indicating that transcription
of these genes begins after embryonic genome activation.
Several glutamate receptor transcripts were detected in
both oocytes and blastocysts, and the expression levels
in oocytes and blastocysts differed significantly in some
transcripts. The expression of glutamate receptors has not
been systematically studied in preimplantation embryos,
although partial information is available from studies
using high-throughput genomics techniques (such as DNA
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Figure 7. Glutamate effects are blocked with AMPA/kainate and GRM5 receptor antagonists. Cell numbers and proportions of dead cells in blastocysts
pretreated with the mixture of AMPA, kainate, and GRM5 receptor antagonists (CNQX and MPEP) prior to L-glutamic acid exposure. GlAc 5 mM,
blastocysts incubated with L-glutamic acid (at 5 mM final concentration) for 24 h; CNQX + MPEP, blastocysts incubated with CNQX and MPEP (at 300
μM and 10 μM final concentrations, respectively) for 24 h; GlAc 5 mM + (CNQX + MPEP), blastocysts incubated with CNQX + MPEP antagonists for
20 min prior to addition of L-glutamic acid (for the following 24 h incubation). TE, trophectoderm, ICM, inner cell mass. The number of blastocysts in the
groups (n): Control, n = 32; GlAc 5 mM, n = 33; CNQX + MPEP, n = 28; GlAc 5 mM + (CNQX + MPEP), n = 34. The values are arithmetical mean +
SEM. Statistical significance of differences: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

microarrays and massively parallel sequencing). For instance,
He et al. [32] compared gene expression in mouse and human
preimplantation embryos and detected two NMDA receptor
transcripts (Grin1 and Grin2c) in mouse embryos and one
AMPA (GRIA1), two NMDA (GRIN2B and GRIN3A), and
several kainate (GRIK 1,2,4,5) and metabotropic receptor
transcripts (GRM 2,5,6,8) in human embryos. One AMPA
(Gria2), two kainates (Grik 1,2), and three metabotropic
(Grm 3,5,7) receptor transcripts were shown to be among the
genes, which were differentially expressed between in vivo
developed and intracytoplasmic sperm injection-generated
mouse blastocysts [33]. One AMPA (GRIA1), one kainate
(GRIK4), two NMDA (GRIN3A, GRIN2D), and several
metabotropic (GRM 2,6,7,8) receptor transcripts were shown
to be downregulated in blastocysts derived from oocytes
obtained from young donors (women below 30 years of
age) as compared with older donors (women above 42 years
of age [34]). A comparison of our results with the results
in the earlier discussed studies shows that we found several
transcripts in mouse blastocysts (Gria 3,4, Grik 3,4,5, Grin
2d, 3a, 3b, Grm 2,4,6,8), which were not detected in those
studies. However, we did not find the three transcripts (Gria2,
Grik2, and Grm7) that were found in mouse blastocysts in
the study by Giritharan et al. [33]. The discrepancy between
these results may have been due to the different methodologies
used.

Our results indicate that multiple glutamate receptor
transcripts are translated into proteins in mouse blastocysts.
We detected two AMPA receptor subunits (GRIA3 and
GRIA4), and GRIA3 protein seemed to be more abundantly
expressed than GRIA4 protein. Proteins of three kainate
receptor subunits (GRIK3, GRIK4, and GRIK5) were detected
in blastocysts, and our comparison of mRNA relative
amounts between oocytes and blastocyst suggests that GRIK3
expression increases after oocyte fertilization. In accordance
with the detection of Grm5 (member 5 metabotropic
glutamate receptor) transcript in blastocysts, we also detected
the GRM5 protein in blastocyst cells.

Numerous studies have investigated the importance of
amino acids in the mammalian preimplantation embryo
environment. In general, the addition of amino acids to
the culture medium improves early embryo development,

although different effects of “essential” and “nonessential”
amino acids added at different developmental stages have
been found [22, 35, 36]. Glutamic acid has usually been
added as part of “nonessential" amino acid mixtures (in final
concentrations of individual amino acids 0.05–0.1 mM), and
these culture medium supplements have had a stimulatory
effect in the cleavage stage as well as on post-compaction
mouse and human embryos [37–41]. Few researchers have
examined the effects of individually added glutamic acid
on preimplantation embryo development. In an early study,
Brinster [42] added 21 amino acids individually at 1 mM and
8 mM concentrations to the culture medium of mouse 2-cell
embryos and reported a slight positive effect (“some cleavage"
as assessed by the author using very simple morphological
analysis) of most amino acids, including glutamic acid. No
effect of glutamic acid added to the culture medium at
0.05 and 0.5 mM concentrations was found in hamster
preimplantation embryos [43]. The addition of 0.4 mM
glutamic acid to the pig oocyte maturing medium led to
an increase in male pronuclear formation after in vitro
fertilization, but no effect on subsequent embryo cleavage
and blastocyst formation was observed [44].

We examined the effects of L-glutamic acid on mouse blas-
tocysts in vitro starting at 2 mM concentration and found that
L-glutamic acid at 5 mM and 10 mM concentrations signif-
icantly impaired blastocyst development. Numerous studies
have demonstrated that activation of glutamate receptors can
influence the viability and survival of neural cells. Glutamate-
induced neuronal cell death (excitotoxicity) is a well-known
phenomenon, and experimental studies using various neural
cell lines have revealed several mechanisms involved in this
process [45]. Moreover, physiological effects of glutamate
receptor activation have also been demonstrated in some non-
neural cell types [17, 27].

To find out whether glutamate receptors participate in the
effect of glutamic acid, we added specific glutamate receptor
agonists into the blastocyst culture medium. We found signif-
icantly impaired blastocyst development after the application
of AMPA and KA (agonists binding to AMPA receptors and
kainate receptors). Our results from gene expression analyses
suggest that the effects of AMPA on blastocysts were mediated
by receptors formed from GRIA3 and/or GRIA4 subunits. KA
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could act through kainate receptors formed from GRIK 3 and
GRIK 4 or GRIK 5 subunits (which we detected in blasto-
cysts). Schiffer et al. [46] showed that GRIK3 can form func-
tional homomeric receptors as well as functional heteromers
with GRIK4 and GRIK5, and these receptors are less sensitive
to KA than other kainate receptors. In accordance with this,
a relatively high concentration of KA was necessary to induce
that effect in blastocysts in our experiment. NMDA receptors
can be activated by the binding of glutamate and glycine co-
agonists (canonical NMDA receptor signaling) as well as by
the binding of glutamate (or NMDA) or glycine alone [47, 48].
We examined exclusively the effects of glutamate/NMDA and
our results showed that the NMDA agonist alone had no sig-
nificant effect on blastocysts. Of the metabotropic glutamate
receptor agonists, only the group I-specific agonists affected
the evaluated parameters in blastocysts. Metabotropic glu-
tamate receptor group I comprises two members, and we
detected only GRM5 (at mRNA and protein levels), and not
GRM1, in mouse blastocysts. So we suppose that the GRM5
receptor is responsible for the (S)-3,5-DHPG effect in mouse
blastocysts. Finally, the effects induced by glutamic acid were
prevented or reduced by pretreatment of blastocysts with
AMPA, kainate, and GRM5 receptor antagonists, confirming
that these receptors were involved in glutamate action.

Our results indicate that glutamate can activate specific
receptors in cells of mouse blastocysts, influencing embryo
development. Another amino acid, glycine, has been shown to
positively affect the development of mouse preimplantation
embryos via glycine receptors [49]. Results obtained in mouse
embryonic stem cells (derived from blastocyst ICM cells)
indicate that activation of metabotropic glutamate receptors
GRM5 and GRM4 can regulate self-renewal and differentia-
tion of these cells [50, 51]. Other amino acids have also been
suggested as acting as signaling molecules in early embryonic
cells, although amino acid uptake and subsequent metabolism
(rather than binding to cell membrane receptors) have been
identified in their action [52–56].

In the in vivo context, most glutamate ingested by the
maternal organism (as protein constituent or in free form) is
metabolized in the intestinal mucosa [15]. However, there are
data showing that oral intake of higher glutamate doses can
increase glutamate concentration in circulation [57, 58]. Glu-
tamic acid and its salts are widely used as additives to enhance
the natural flavors of foods [59], and it cannot be ruled
out that excessive intake of these ingredients could increase
glutamate concentration in the preimplantation embryo envi-
ronment. Further research is needed to clarify whether the
intake of glutamate as a food additive can interfere with the
preimplantation embryo development.

In conclusion, our data show that glutamic acid present in
the environment of the early embryo not only functions as
a “nutritional factor,” but can also affect embryo develop-
ment through activation of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), kainate, and metabotropic
(GRM5) glutamate receptors. Our results show that gluta-
mate extracellular concentrations at 5 mM can adversely
affect preimplantation embryo development in vitro. The
reason that relatively high concentrations of glutamic acid
are needed to stimulate glutamate receptors in mouse blas-
tocyst cells is probably related to the activity of amino acid
transporters capable of delivering glutamate into cells of
preimplantation embryos [23, 60–62]. These data indicate
that glutamate can act in two ways in early embryos: as

an intracellular metabolite and as an extracellular signaling
molecule.
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