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Abstract

Range-restricted upland taxa are prone to population bottlenecks and thus typically have low genetic diversity, 
making them particularly vulnerable to environmental change. In this study, we used a combination of genotyping-
by-sequencing (10,419 SNPs) and mitochondrial COI sequencing to test for population genetic structure within the 
narrow-range flightless sub-alpine stonefly Zelandoperla maungatuaensis Foster. This species is restricted to only 
a handful of upland streams along a 4 km stretch of the isolated Maungatua range in southeast New Zealand. We 
identified striking genetic structure across the narrow range of Z. maungatuaensis, with three deeply divergent 
allopatric lineages detected. These distinct lineages likely diverged in the early-mid Pleistocene, apparently per-
sisting in separate microrefugia throughout subsequent glacial cycles. Our results illustrate how secondary flight 
loss can facilitate insect diversification across fine spatial scales, and demonstrate that intraspecific phylogenetic 
diversity cannot necessarily be predicted from range-size alone. Additional demographic analyses are required to 
better understand the conservation status of these divergent Z. maungatuaensis lineages, and to assess their po-
tential susceptibility to climate change and other anthropogenic impacts.

Keywords:  conservation genetics, genotyping-by-sequencing, Plecoptera, stonefly, wing loss

Understanding the forces driving biological diversification remains 
one of the fundamental goals of evolutionary biology (Mayr 1942, 
Sobel et al. 2010). The evolution of insect flight, some 400 million 
years ago (Ma) (Misof et al. 2014) was likely a key driver of their 
diversification, allowing species to disperse, and exploit novel habi-
tats (Dudley 2000). Recent studies, however, indicate that secondary 
flight loss may further enhance these rates of diversification (Salces-
Castellano et  al. 2021), primarily by limiting gene-flow across 
populations (Ortego et al. 2021a). These high levels of intraspecific 
diversification may also be correlated with increased speciation rates 
(Ikeda et al. 2012, Waters et al. 2020, Fenker et al. 2021, Gálvez-
Reyes et al. 2021). 

The evolutionary trajectories of low-dispersal taxa can be signifi-
cantly impacted by ‘vicariant’ earth-history processes, such as moun-
tain building (Hoorn et al. 2013, Craw et al. 2016) and glaciation 
(McCulloch et  al. 2010, Wallis et  al. 2016, Ortego et  al., 2021b). 
Nondispersive freshwater species may be particularly vulnerable to 
such abiotic processes, as such taxa have limited ability to disperse 

beyond their catchments (Avise et  al. 1987, Craw et  al. 2016, 
McCulloch et al. 2019a). While recent studies have highlighted the 
biological effects of physical processes in shaping the genetic struc-
turing of such lineages over broad geographic scales (e.g., among 
major drainage systems; Mayden 1988; Waters et  al. 2001; Finn 
et  al. 2016; and among mountain ranges; McCulloch et  al. 2010, 
Ortego et al. 2021b), relatively little is known about how such pro-
cesses operate across finer spatial scales (e.g., among adjacent river 
tributaries within mountain ranges; Wishart and Hughes 2003). 

Range-restricted taxa (e.g., endemic to a single mountain range) 
represent challenging systems for conservation and biogeographic 
research. Such narrow-range endemics can potentially arise via a 
combination of intrinsic (e.g., limited dispersal ability; strict habitat 
requirements) and/or extrinsic (geographic barriers; competitive 
and density-dependent ecological processes; Waters et al. 2020) fac-
tors. In many cases, range-restricted species have experienced major 
population bottlenecks and associated rapid genetic drift, and are 
thus expected to exhibit only low levels of genetic diversity (e.g., 
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Frankham, 1998; but see Binks et al. 2015). Such low diversity may 
be particularly pervasive for isolated upland species (Finn et  al. 
2014, Jordan et al. 2016, Hinojosa et al. 2019), especially those vul-
nerable to climate-driven reductions (Muhlfeld et al. 2011, Giersch 
et al. 2015). However, some narrow-range upland taxa present not-
able exceptions to these expectations, with substantial divergence 
between neighbouring populations (e.g., Wishart and Hughes 2003).

Many of New Zealand’s upland stoneflies (order Plecoptera) are 
flightless, and have restricted geographic distributions (McLellan 
2006, McCulloch et al. 2017). Such lineages potentially present strong 
model systems for assessing the effects of flightlessness on genetic di-
versity (Waters et al. 2020). As a case in point, the recently described 
flightless Maungatua stonefly, Zelandoperla maungatuaensis Foster 
(Plecoptera: Gripopterygidae), is restricted to a handful of adjacent 
streams (within just a few km of one another) along a single moun-
tain range in southeast New Zealand (Fig. 1; Foster et  al. 2020). 
Like many of New Zealand’s flightless stoneflies, this species is 
found almost exclusively above the alpine treeline (McCulloch et al. 
2019a, McCulloch et  al. 2019b). As Z.  maungatuaensis diverged 
phylogenetically from its closest relative (the lowland, full-winged 
Z. denticulata McLellan; western South Island) some 2 million years 
ago, a single (ancient) loss of flight ability has been suggested for this 
upland lineage (Foster et al. 2020).

In this study we test for intraspecific genetic diversity within the 
narrow-range ‘relict’ Z. maungatuaensis. Specifically, we use popu-
lation genomic analyses to assess phylogenetic diversity and struc-
turing in this endemic species. We hypothesize that, due to strict 
habitat requirements and limited dispersal capacity, there will be 
little gene flow among neighbouring subpopulations, leading to 
the development of genetic structuring among the different stream 
populations. We assess the distribution of this intraspecific genetic 
diversity under both evolutionary and conservation frameworks.

Methods

Sampling
Z.  maungatuaensis was originally described from two unnamed 
subalpine streams on the eastern face of the Maungatua range. We 
conducted additional sampling across the Maungatua range, from 

February to November 2020, to better assess the geographic dis-
tribution of the species. Nymphs were collected from under small 
stones in riffle zones, and preserved in 100% ethanol.

Mitochondrial Sequencing
DNA was extracted from stonefly head tissue using DNeasy kits 
(Qiagen). We amplified a 651-bp portion of the mitochondrial cyto-
chrome oxidase I (COI) gene from 33 individuals across 8 streams 
(3–6 specimens per stream), following the protocols of McCulloch 
et al. (2009). We tested for evidence of pseudogenes by examining 
whether there were any ambiguous sites or stop codons in the se-
quence (see Zhang and Hewitt 1996).

All new COI sequences obtained in this study were deposited in 
GenBank (GenBank accession numbers OM802728-OM802761).

The newly amplified COI sequences were aligned with two 
additional Z.  maungatuaensis COI sequences (accession numbers 
MK942108 and MK942109) in Geneious 11.1.5 (https://www.
geneious.com/; Kearse et  al. 2012), using the MUSCLE plugin 
(Edgar 2004). Phylogenetic relationships were reconstructed in 
MrBayes 3.2.7a (Ronquist et al. 2012), with Zelandoperla agnetis 
McLellan (GQ414594) and Zelandoperla denticulata (GQ414593) 
used as outgroups. We ran four Markov chains for five million gen-
erations, with chains sampled every 200 generations. The first 2,000 
trees were discarded as burn-in. Tracer v1.7.0 (Rambaut et al., 2018) 
was used to confirm that the parameters had all converged, and to 
ensure that the effective sample size was greater than 200 for each 
of the priors. We estimated the divergence among the mitochondrial 
clades using standard insect calibrations (3.54% per million years; 
Papadopoulou et al. 2010).

Genotyping-by Sequencing
We conducted genotyping-by-sequencing (GBS) to investigate 
fine-scale genetic structuring among Z.  maungatuaensis sam-
ples. The GBS library preparation and sequencing was conducted 
at AgResearch, Invermay, New Zealand following the methods of 
Elshire et al. (2011), with modifications as outlined in Dodds et al. 
(2015). We used the same 35 Z. maungatuaensis specimens that were 
used for COI sequencing. Briefly, DNA was fragmented using the re-
striction enzyme PstI. Sample specific barcodes were added, and the 
samples were pooled into a single library. The library was column 
purified, then size selected (220–520 bp) using a Pippen Prep (Sage 
Science). We used single end sequencing (1 × 101bp), with the library 
sequenced as 2/3 of a lane of Illumina NovaSeq6000, utilizing v1.5 
chemistry.

We evaluated the quality of the data using fastqc 0.11.9 
(Andrews 2010). Variants were called using Stacks 2.58 (Rochette 
et  al. 2019). The detailed SNP calling procedure can be found in 
Appendix S1. Briefly, we removed adapters using cutadapt 3.5 before 
demultiplexing the raw reads using the process_radtags command in 
Stacks. All reads were trimmed to a common length (60 bp). Low-
quality reads, and reads that did not contain the enzyme recogni-
tion site, were removed. As there is no Z. maungatuaensis reference 
genome, we de novo assembled the cleaned reads, using the denovo_
map.pl pipeline with default parameters. Following genotyping, we 
used the populations module of Stacks to further filter the data. 
Specifically, we only retained loci that were found in 80% of sam-
ples, and discarded any loci containing SNPs with a heterozygosity 
above 0.65 (as these loci are potentially paralogs [see O’Leary et al. 
2018]).

We assessed population structuring using principal component 
analysis (PCA) in the R package ADEGENET version 2.1.1 (Jombart 

Fig. 1. A portion of southeastern South Island, illustrating the topographic 
isolation of the Maungatua Range, where the flightless stonefly Zelandoperla 
maungatuaensis (inset) is found.
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2008; R Core Team 2020). We examined the phylogenetic relation-
ships among populations by constructing a maximum likelihood 
phylogeny (using IQ-Tree v2.1.1; Minh et al. 2020). ModelFinder 
(Kalyaanamoorthy et al. 2017) was used to select the best fit model 
for our data, with an ascertainment bias applied (as our data set 
lacks invariant sites). We assessed node support with 5,000 ultrafast 
bootstrap approximations (Hoang et al. 2018). The phylogeny was 
rooted using the midpoint rooting method.

Pairwise FST values among streams were calculated in arlequin 
3.5 (Excoffier and Lischer 2010). The significance of these values 
was assessed with 10,000 permutations, with Bonferroni corrections 
applied to account for multiple tests. We tested for an association be-
tween genetic distance (linearized FST) and geographic distance (the 
overland distance between sites) using a Mantel test (Mantel 1967) 
in Genepop 4.7.5 (Rousset 2008).

Results

Z. maungatuaensis nymphs were collected from eight streams along 
the eastern face of the Maungatua range (Supp Table S1 [online 
only]; Fig. 2a). We did not detect the species in any of the streams 
on the southern or western faces of the range (Fig. 2a). Our surveys 
thus confirm that Z. maungatuaensis has a very narrow geographic 
distribution (less than 4 km across).

Sequencing revealed four discrete COI haplotypes across the eight 
streams. No ambiguous sites or stop codons were evident, suggesting 
all sequences were of mitochondrial origin. Phylogenetic analysis re-
vealed three well-supported mitochondrial clades corresponding to 
distinct regions: a southern clade, a central clade, and a northern 
clade (Fig. 3a). The three clades did not overlap geographically (Fig. 
2a). The northern and central clades were recovered as sisters, and 
differed by 1.0%. A significantly larger divergence was evident be-
tween the central and southern clade (4.3%), and the northern and 
southern clade (4.2%). Under standard insect calibrations rate, our 
results suggest that the three clades began to diverge about 1.2 Ma. 
Almost no genetic diversity was evident within each of the clades, 
with all but the northern clade containing only a single haplotype.

GBS yielded average of 3,353,899 reads per individual. Following 
SNP calling, 35 Z. maungatuaensis samples were compared across 
10,429 SNPs. The proportion of missing data in the final dataset was 
6.7%, with a mean coverage of 51× across all loci and individuals. 
Population genomic analyses revealed significant population struc-
ture across the Maungatua range, with individuals again clustering 
into the distinct northern, central, and southern lineages (Fig. 2b), 
and significant pairwise FST values were evident among populations 
from the three geographic regions (Table 1). In contrast to the COI 
analysis, the central and southern clades were recovered as sister 
taxa (Fig. 3b). Limited population genetic structure was also evi-
dent within the northern and central clades (Supp Fig. S1 [online 
only]), though pairwise FST values among different streams within 
clades were relatively small, and not statistically significant (Table 
1). We detected weak, but significant isolation-by-distance across the 
streams (r2 = 0.167; P = 0.031; Supp Fig. S2 [online only]), though 
this pattern was primarily driven by the differentiation among the 
distinct geographic lineages.

Discussion

Evolution of Fine-scale Diversity
In the current study we detect striking genetic substructuring 
within a narrow-range endemic insect over just a few kilometres 

of upland habitat in southern New Zealand. Specifically, strong 
genome-wide (GBS) differentiation among three allopatric lineages 
of Z. maungatuaensis on the Maungatua range is mirrored by deep 
mtDNA divergences (up to 4.3%), with concordant groupings de-
tected for both marker sets. These results illustrate how wing loss 
can drive rapid diversification across very small spatial scales. Our 
results imply that the neighbouring lineages diverged in the early-
mid Pleistocene (ca. 1 Ma), and likely persisted locally in sep-
arate microrefugia throughout repeated glacial cycles. While such 
microrefugial dynamics might be anticipated over broad geographic 
scales (e.g., separate mountain ranges, hundreds or thousands of 
kilometres apart; Wallis et al. 2016, King et al. 2020); to discover 
them operating locally over kilometre scales is intriguing. Along 
similar lines, while occasional contact zones involving divergent 
lineages have been reported for widespread upland taxa (Weston 
and Robertson 2015, King et al. 2020, Ortego et al. 2021b), finding 
such deep genetic structure within a narrow-range endemic taxon is 
unexpected.

Several recent phylogeographic studies of upland insect lineages 
over fine spatial scales have revealed substantial genome-wide struc-
ture, sometimes linked to disjunct stream habitats (Dussex et  al. 
2016, McCulloch et  al. 2019a, McCulloch et  al. 2021). However, 
these previous local examples typically involved recently-diverged 
lineages lacking corresponding mitochondrial divergence (Dussex 
et al. 2016, McCulloch et al. 2021). Additionally, in these previous 
cases, the local genetic structure stems from repeated flight loss 
events, with neighbouring flightless populations having been in-
dependently derived (McCulloch et al. 2019a, Suzuki et al. 2019). 
However, in the current study there are no closely-related flighted 
lineages likely to have seeded such independent dispersal-reduction 
events (see Waters et  al. 2020), with flightless Z.  maungatuaensis 
clearly representing a monophyletic assemblage, with its closest rela-
tive (the full winged Z. denticulata) found more than 200 km away 
(Foster et al. 2020).

While both GBS and mtDNA yielded three congruent groupings 
of Z.  maungatuaensis samples, the relationships among these key 
groupings varied across marker sets. Such mitonuclear discordance 
is a common feature of isolated freshwater populations (Wallis et al. 
2017), and could stem from a variety of factors, including past intro-
gression or stochastic lineage sorting (see Toews and Brelsford 2012). 
Additional possible factors contributing to mitonuclear discordance 
could include sex-biased dispersal (e.g., Yannic et al. 2012), Wolbachia 
infection (Gompert et  al. 2008), positive selection (e.g., Sunnucks 
et al. 2017), and genetic incompatibilities (e.g., Arntzen et al. 2009). 
Regardless, the evolution and preservation of deep genetic divergence 
among allopatric alpine stream populations apparently attests to long 
histories of population isolation and stability across different por-
tions of the Maungatua range. In the context of comparable studies 
of range-restricted upland invertebrates (e.g., Finn et al. 2014, Jordan 
et al. 2016, Hinojosa et al. 2019), the current data seem exceptional 
in terms of both the timeframe (early-mid Pleistocene), and the very 
narrow spatial scale involved (a few km). Broadly, these findings sug-
gest that phylogeographic diversity is not necessarily predictable from 
geographic range size alone (Binks et al. 2015). Indeed, additional fac-
tors such as habitat stability and connectivity may play crucial roles 
in facilitating genetic diversification over even the narrowest of geo-
graphic scales (Wishart and Hughes 2003).

Geological Controls on Stonefly Evolution
The Maungatua Range that hosts Z.  maungatuaensis is a rela-
tively isolated high topographic feature, and the nearest mountains 
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of similar altitude are more than 30 km away (Fig. 1). This topo-
graphic isolation has almost certainly facilitated initial speciation of 
these flightless insects. The topography is relatively young, in that 

the whole area has risen from below sea level since the Miocene 
(last 20 million years), and is dominated by tectonic uplift rather 
than erosion (Youngson and Craw 1996). Within this region, the 

Fig. 2. Striking genetic substructuring across the narrow geographic range of Zelandoperla maungatuaensis. (a) Collection localities (coloured circles) for 
Z. maungatuaensis across the Maungatua range. White crosses indicate sites where Z. maungatuaensis has not been found. (b) Principal component analysis, 
based on 10,429 genome-wide SNPs, illustrating the genetic differentiation among Northern, Southern, and Central Z. maungatuaensis lineages.
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Maungatua Range has risen as an elongated domal feature above 
the surrounding landscape in even more recent times, through the 
Pleistocene. This more localised uplift has been associated with 
Pleistocene–Holocene fault activity along the margins of what is 
now the Taieri Basin, a Pleistocene subsidence feature (Supp Fig. S3 
[online only]; Litchfield 2001). Pleistocene uplift occurred along the 
northern side of North Taieri Fault and the Maungatua Range rose 
above, e.g., the adjacent Barewood Plateau because of locally en-
hanced uplift rates. The elongated domal shape of the Maungatua 
Range uplands has evolved progressively towards the northeast and 
southwest through the Pleistocene and this may be on-going. The 
three allopatric lineages of Z. maungatuaensis have developed sep-
arately on this dome as it evolved.

The approximately 4 km range of Z.  maungatuaensis incorp-
orates several parallel, high-gradient (unnamed) streams draining 
the southeast slopes of the Maungatua range, at and above the al-
pine treeline (550–700 m a.s.l.). These streams are typically con-
nected to each other only via the downstream swampy Taieri 
plain, a habitat highly unsuitable for stoneflies, rendering many of 
these Z. maungatuaensis populations effectively isolated from one 

another. These distinctive landscape features thus appear to explain 
the evolution of multiple isolated stonefly lineages over a narrow 
spatial scale. In a few cases, the detection of genetically-related lin-
eages among adjacent tributary populations (e.g., F, G & H; C & 
D; Fig. 2a) likely represents gene flow facilitated by continuous 
riverine connectivity (i.e., where tributaries merge at intermediate 
elevations). Such gene flow may have been enhanced during glacial 
periods, as geographic ranges of the lineages likely extended to lower 
elevations in response to associated cooling and loss of forest cover. 
By contrast, some apparent genetic connectivity among adjacent 
drainages that have no high-elevation wet connections might reflect 
occasional small-scale (e.g., 50–100 m) overland dispersal of upland 
adults, particularly in adjacent headwater regions (e.g., D & E; B & 
A; see Fig. 2a; Craw et al. 2007).

Conservation Implications
The detection of substantial genome-wide and mitochondrial diver-
gence within the narrow geographic distribution of a range-limited 
taxon raises potentially challenging questions for conservation, 

Fig. 3. Phylogenetic reconstruction reveals three well-supported Zelandoperla maungatuaensis clades. (a) Bayesian maximum likelihood consensus phylogeny 
illustrating the relationships among Z. maungatuaensis lineages based on the mitochondrial COI gene. Posterior probability values are noted above each node. 
Outgroups (Zelandoperla agnetis and Zelandoperla denticulata) are excluded for diagrammatic clarity. (b) Midpoint rooted maximum likelihood phylogeny 
illustrating genome-wide relationships among Z. maungatuaensis lineages, based on 10,429 SNP markers. IQTREE ultrafast bootstrap values ≥ 90 are indicated 
at each node.

Table 1. Pairwise FST values among collection localities for Zelandoperla maungatuaensis (see Fig. 2a for locality details)

 A B C D E F G H 

A 0        
B 0.060 0       
C 0.739 0.742 0      
D 0.715 0.715 0.037 0     
E 0.732 0.735 0.003 −0.002 0    
F 0.749 0.749 0.658 0.628 0.651 0   
G 0.763 0.766 0.690 0.661 0.687 0.004 0  
H 0.728 0.726 0.630 0.586 0.616 0.001 0.001 0

Values in bold are significant at P = 0.05 after Bonferroni correction. 
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especially when management resources are already stretched (Lester 
et al. 2014, Drinan et al. 2021). Indeed, the levels of mtDNA diver-
gence detected here are comparable to those often found between 
distinct insect species pairs (e.g., McCulloch et al. 2010, Allegrucci 
et al. 2014, Wallis et al. 2016, Alfaro et al. 2018). As such, future 
systematic analyses should reassess the taxonomic status of these 
genetically isolated subpopulations of Z.  maungatuaensis. While 
these populations are partly protected as a result of their distri-
butional overlap with the Maungatua Scenic Reserve, additional 
demographic analyses are required to better assess their conserva-
tion status and potential susceptibility to climate change and other 
potential anthropogenic impacts.

More broadly, our data imply that caution is needed when 
making conservation and management (e.g., threat-ranking; Drinan 
et  al. 2021) decisions that focus primarily on the geographic area 
occupied by rare taxa (see Rattis et al. 2018). Specifically, we suggest 
that geographic range is not always a useful surrogate for genetic di-
versity (Hanson et al. 2017). Indeed, our study highlights the poten-
tially complex microrefugial dynamics of low-dispersal species over 
even small geographic scales (Binks et al. 2015), where local genetic 
diversification can substantially exceed that found in more disper-
sive taxa over relatively vast spatial scales (e.g., Allibone and Wallis 
1993, Waters et al. 2020).

Supplementary Data

Supplementary data are available at Insect Systematics and 
Diversity online.
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