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Biodiversity loss is a major global challenge of the 21st century. Ultimately, extinctions of species are determined by 
birth and death rates; thus, conservation management of at-risk species is dependent on robust demographic data. In 
this study, data gathered from 381 (227 females, 154 males) long-finned pilot whales (Globicephala melas edwardii) 
that died in 14 stranding events on the New Zealand coast between 2006 and 2017 were used to construct the first 
age- and sex-specific life tables for the subspecies. Survivorship curves were fitted to these data using (1) a tradi-
tional maximum likelihood approach, and (2) Siler’s competing-risk model. Life table construction and subsequent 
survival curves revealed distinct differences in the age- and sex-specific survival rates, with females outliving males. 
Both sexes revealed slightly elevated rates of mortality among the youngest age-classes (<2 years) with postweaning 
mortality rates decreasing and remaining relatively low until the average life expectancy is reached; 11.3 years for 
males and 14.7 years for females. Overall (total) mortality is estimated to be 8.8% and 6.8% per annum for males 
and females, respectively. The mortality curve resembles that of other large mammals, with high calf mortality, lower 
postweaning mortality, and an exponentially increasing risk of senescent mortality. An accelerated mortality rate was 
observed in mature females, in contrast to the closely related short-finned pilot whale (G. macrorhynchus), which 
selects for an extension to the postreproductive life span. The reason for the observed differences in the mortality 
rate acceleration and postreproductive life span between the two pilot whale species have not been established and 
warrant further investigation. Obtaining robust information on the life history of long-lived species is challenging, 
but essential to improve our understanding of population dynamics and help predict how future pressures may impact 
populations. This study illustrates how demographic data from cetacean stranding events can improve knowledge of 
species survival rates, thus providing essential information for conservation management.
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Given the unprecedented rates of biodiversity loss globally, 
evidence-based conservation policies are urgently required 
(Conde et al. 2019; Almond et al. 2020). Birth and death 
rates set the pace of population increase or decline and drive 
the expansion or extinction of a species. Therefore, demo-
graphic data are essential to inform species conservation 

policies and develop risk assessments (Conde et al. 2019). 
Life tables and survivorship curves have proven to be pow-
erful conservation tools when combined with demographic 
models that predict the susceptibility of certain age-classes 
to anthropogenic impacts (e.g., Crouse et al. 1987; Moore 
and Read 2008).
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Models of population viability are fundamentally based 
on age structure (Caughley 1977; Barlow and Boveng 1991). 
Determining the age structure of a population is, therefore, the 
essential first step when studying population dynamics (Evans 
and Hindell 2004). Further, the parameters that have been inter-
preted to reflect significant changes to population abundance or 
resource availability are those specific to age, for example, age 
at sexual maturation, age-specific fecundity rates, and growth 
parameters of individuals in the population (Caughley 1977; 
Evans and Hindell 2004). Additionally, determining age-at-
death of individuals removed by anthropogenic activities (e.g., 
drive fisheries or fisheries bycatch), or mass mortality events, 
is crucial not only for understanding the dynamics of a popula-
tion, but also for determining if particular ontogenetic groups 
are more or less at risk.

Survival and mortality rates can be inferred directly by fol-
lowing one or more cohorts through time, or indirectly from 
analysis of age distribution of live (Caughley 1966; Barlow 
and Boveng 1991) or dead (Caughley 1966; Stolen and Barlow 
2003) individuals. All methods involve assumptions that are 
unlikely to be fully satisfied but are often estimated well enough 
for practical purposes (Stolen and Barlow 2003). Life tables 
based on age-at-death data have been presented for several spe-
cies of large terrestrial mammals (e.g., Caughley 1966; Laws 
1968; Spinage 1972). However, obtaining robust estimates of 
survival probabilities for cetacean populations remains chal-
lenging, and published examples of age-structured life tables 
are rare (Barlow and Boveng 1991; Stolen and Barlow 2003).

In cetaceans, changes at the population level can occur due 
to stressors such as climate change, pollution, fishery-related 
activities, noise pollution, disease, and habitat degradation, 
and populations can vary in their ability to recover (Simmonds 
2018). For most cetacean species, stranding records provide 
the most accessible source of information about the population 
dynamics (Saavedra 2018). When stranding records are exam-
ined, four main types of strandings can be identified: (1) single 
strandings, (2) mass-stranding events (MSEs), (3) mass mor-
talities and unusual mortality events (UMEs), and (4) out of 
habitat situations (Moore et al. 2018). The majority of these 
events are single strandings, involving individuals that have 
either become ill or died before coming ashore, but occasion-
ally large groups of apparently healthy cetaceans strand live. 
Most cetaceans involved in an MSE often die in situ or a short 
distance away from the original stranding site (Martin et al. 
1987). It is not understood why apparently healthy cetaceans 
strand en masse, although there are a variety of both natural 
and anthropogenic hypotheses including coastal topography 
and oceanography (Brabyn and McLean 1992; Walker et al. 
2005; Brownlow et al. 2015; Hamilton 2018), meteorological 
and geomagnetic conditions (Evans et al. 2005; Bradshaw et al. 
2006; Mazzariol et al. 2011), seismic activity, and sonar noise 
(Fernandez et al. 2005; Southall et al. 2006, 2013; Brownlow et 
al. 2015). It is likely that a number of factors contribute to each 
stranding event, and these vary on a case-by-case basis. MSEs 
should not be confused with mass mortality events or UMEs 
where animals strand dead (or dying) over an extended period 
of time (Moore et al. 2018).

The long-finned pilot whale (LFPW; Globicephala melas) is 
among the species most often involved in live MSEs through-
out their range (Minton et al. 2018). Pilot whales tend to 
strand in large numbers of mixed ages and sexes on gently 
sloping beaches, and strandings often recur in a specific geo-
graphic area: for example, Cape Cod, Massachusetts, United 
States (McFee 1990; Wiley et al. 2001; Sweeney et al. 2005); 
Tasmania, Australia (Evans et al. 2005; Kemper et al. 2005; 
Gales et al. 2012; Beasley et al. 2019); and Golden Bay, New 
Zealand (Betty et al. 2020). Although the cause(s) of MSEs 
is often not determined (e.g., Bogomolni et al. 2010; Dolman 
et al. 2010), there is no doubt that strong social bonds exist 
within pilot whale groups (Olson 2018). Given that the mass-
stranded groups of LFPWs have been found to reflect the age 
and sex composition of entire pods driven ashore by fisheries 
(Sergeant 1982), and there is usually no reason to suspect that 
live mass-stranded groups are unrepresentative of free-ranging 
pods (Martin et al. 1987), MSEs provide a valuable opportunity 
to study the demography of the species.

The current study investigated the age structure, and age 
and sex-specific survivorship and mortality, of the Southern 
Hemisphere subspecies of LFPW, G. m. edwardii. Specifically, 
we present age- and sex-specific (1) life tables, (2) survivorship 
curves, and (3) mortality schedules for G. m. edwardii using 
age-at-death data collected from animals that did not survive 
stranding events on the New Zealand coast between 2006 and 
2017.

Materials and Methods
Age estimation.—Teeth from 405 LFPWs (239 females, 163 

males, and three of unknown sex) that died in 14 stranding 
events on the New Zealand coast between 2006 and 2017 were 
collected for age estimation purposes (Table 1). Sex was deter-
mined by gross examination of external genital opening. Age 
estimation was performed by counting annual growth layer 
groups (GLGs) in decalcified and stained longitudinal sec-
tions of teeth, as described by Perrin and Myrick (1980). Tooth 
preparation methods for this study were adapted from Lockyer 
(1993), and all sections were read by at least two individuals 
(for further explanation, see Betty et al. 2022). Individuals 
for which age could not be estimated reliably were excluded 
from further analysis. Ages from a total of 381 whales from 14 
stranding events (median 19.5, range 1–95 per stranding event), 
including 227 females (median 11.5, range 0–64 per strand-
ing event) and 154 males (median 9, range 0–31 per stranding 
event), were used to construct age- and sex-specific life tables, 
as detailed below.

Calves that did not possess a neonatal line in the tooth, or 
had a neonatal line forming, with no additional postnatal den-
tin, were classified as newborns. Individuals were considered 
weaned if they were older than 2 years, sexually immature if 
they were younger than the estimated age at attainment of sex-
ual maturity (ASM) for the population, or sexually mature if 
they were older than or equal to the estimated ASM, that is, 
13.5 and 6.7 years for males and females, respectively (Betty 
2019; Betty et al. 2019).
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Life tables, survivorship, and mortality rates.—Life tables, 
including age-specific survivorship (l

x
) and mortality (q

x
) rates 

for both male and female LFPWs, were constructed using two 
approaches: (1) following the traditional approach as described 
by Caughley (1966) and Krebs (1989), and (2) fitting the Siler 
competing-risk model (Siler 1979; Barlow and Boveng 1991; 
Bloch et al. 1993a; Stolen and Barlow 2003; Moore and Read 
2008) to smooth the age-at-death data. The life table calculations 
for both the traditional and Siler methods were constructed using 
estimated ages and are based on a hypothetical cohort of 1,000 
LFPWs. In order to construct these life tables, it was assumed 
that (1) MSEs of LFPWs on the New Zealand coast are represen-
tative of the population, (2) carcass recovery and tooth collection 
from MSEs were independent of age and sex, and (3) the popu-
lation has a stable age distribution and a zero-growth rate (often 
referred to as a stationary age distribution; Caughley 1966).

Traditional life tables have previously been applied to 
stranded cetaceans (e.g., Stolen and Barlow 2003; Evans and 
Hindell 2004; Murphy et al. 2007) where theoretical populations 
are constructed with corresponding abundance by age. Vectors 
of age-specific survival and mortality are then estimated from 
this population structure using the traditional method as given 
by Krebs (1989), where: n

x
 = the number of individuals alive at 

age x; d
x
 = the number of individuals dying during the age inter-

val x to x + 1; l
x
 = the proportion of the animals surviving to the 

start of age x (i.e., survivorship); q
x
 = the proportion of animals 

alive at age x that die before age x + 1 (i.e., mortality rate); e
x
 

= average (remaining) life expectancy for individuals at age x; ∑
dx/

∑
lx  = overall (total) annual average mortality rate.

Mortality and survival rates directly derived from observa-
tional age-at-death data are generally imprecise and may be 
biased (e.g., underrepresentation of young ages) and therefore 
model-based estimates are preferred (Saavedra 2018). In this 
study, the Siler model (Siler 1979) was used to smooth the age-
at-death data, and avoid violating the requirements of a ver-
tical life table (i.e., that the frequency of each age-class x is 

equal to or greater than age-class x + 1). The Siler model (Siler 
1979) was selected over the commonly used Gompertz model 
(Gompertz 1825) because the Siler model does not require any 
assumption on when the onset of aging occurs and therefore 
retains the expected relationships between juvenile, adult, and 
senescent life stages (Saavedra 2018; Lemaître et al. 2020). The 
Siler model adequately fits expected mortality patterns for a 
wide range of long-lived species, including marine mammals 
(Barlow and Boveng 1991; Stolen and Barlow 2003; Mannocci 
et al. 2012; Saavedra 2018; Lemaître et al. 2020). In the Siler 
model, survivorship at a given age l(x) is expressed as the prod-
uct of three competing risks as denoted in equation (1).

 l(x) = lj(x)× lc(x)× ls(x)  (1)

where: lj(x) = exp{(a1/b1 )[1 − exp(−b1x) ]} is an 
exponentially decreasing risk due to juvenile risk factors; 
lc(x) = exp{−a2x} represents a constant risk experienced by 
all age-classes; ls(x) = exp{(a3/b3 )[1 − exp(b3x) ]} is the 
exponentially increasing risk due to senescence; x is a given 
age and a

n
 and b

n
 are the Siler parameters. The total mortality 

at a given age µ(x) is the sum of the juvenile mortality µj(x), 
the constant mortality affecting all age-classes µc(x), and the 
senescent mortality µs(x), as denoted in equation (2).

 µ(x) = µj(x) + µc(x) + µs(x)  (2)

Total mortality can be calculated using the Siler parameters 
(a1, b1, a2, a3, b3) as denoted in equation (3).

 µ(x) = a1 exp (−b1x) + a2 + a3 exp(b3x)  (3)

The above equation describes the general shape of the mor-
tality curve using five parameters that account for initially 
increasing (and subsequently decreasing) risk of an individ-
ual dying at the beginning of life, a constant risk through life, 

Table 1.—Sex and maturity composition of long-finned pilot whales (Globicephala melas edwardii) that did not survive stranding on the New 
Zealand coast (2006–2017), by stranding event. No. strand = total number of whales involved in stranding event; No. dead = total number of 
whales that died during the stranding event; IF = immature female (< estimated attainment of sexual maturity [ASM] of 6.7 years; see Materials 
and Methods section); IM = immature male (< estimated ASM of 13.5 years; see Materials and Methods section); MF = mature female (≥ASM); 
MM = mature male (≥ASM); UK = unknown sex-maturity category.

Date Location No. strand No. dead IF IM MF MM UK 

12 December 2006 Muriwai, Auckland 1 1 0 0 0 1 0
23 January 2008 Farewell Spit, Golden Bay 34 14 2 2 2 2 6
25 December 2009 Farewell Spit, Golden Bay 105 105 15 14 19 12 45
23 January 2010 Port Levy, Banks Peninsula 54 16 7 5 4 0 0
14 February 2010 West Ruggedy Beach, Stewart Island 28 28 2 6 8 3 9
18 June 2010 Ruapuke, Waikato 20 20 3 4 9 4 0
22 September 2010 Te Horo Beach, Far North 49 40 5 6 20 7 2
4 February 2011 Port Puponga, Golden Bay 84 17 0 4 2 1 10
20 February 2011 Mason Bay, Stewart Island 107 107 14 17 50 14 12
14 November 2011 Farewell Spit, Golden Bay 65 65 3 11 23 7 21
6 January 2014 Farewell Spit, Golden Bay 39 39 4 13 16 3 3
14 January 2014 Farewell Spit, Golden Bay 99 98 0 5 15 4 74
3 November 2014 Muriwai, Auckland 1 1 1 0 0 0 0
10 February 2017 Farewell Spit, Golden Bay 600 200 1 6 2 3 188

1,286 751 57 93 170 61 370
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and increased risk due to senescence. The competing-risk 
Siler model was fitted to the LFPW age-at-death data using 
the Nelder and Mead (1965) optimization method imple-
mented in the “strandCet” package (Saavedra 2018) in R (R 
Development Core Team 2018).

Results
Age structure.—Age was estimated for 227 female and 

154 male LFPWs (Fig. 1) stranded in 14 independent events 
(Table 1). Age ranges or a minimum age were obtained from a 
further 22 whales due to difficulties in counting GLGs in their 
dentin and cementum; these individuals were not included 
in the subsequent life table construction. Females ranged 
from 0 to 38 years and males from 0 to 31 years (Fig. 1). The 
age-specific male sample was composed of younger individu-
als than the female sample, with 28% of males younger than 
5 years and 90% younger than 20 years, compared with 18% 
of females younger than 5 years and 71% younger than 20 
years. Overall, the data set was dominated by sexually imma-
ture individuals of both sexes (n = 150) and sexually mature 
females (n = 170) with a smaller number of mature males 
(n = 61; Table 1) and very few males older than 20 years  
(n = 12; Fig. 1).

Life tables, survivorship, and mortality rates.—Life table 
construction (Supplementary Data SD1–SD3) and subsequent 
survival (Fig. 2) and mortality curves (Fig. 3) showed distinct 
differences in the age- and sex-specific survival and mortal-
ity rates for New Zealand LFPWs. The traditional life table 
(Supplementary Data SD1) estimates the average life expec-
tancy at birth to be 13.6 years, while the sex-specific model life 
tables estimate average life expectancy to be 11.3 years and 
14.7 years for males and females, respectively (Supplementary 

Data SD2 and SD3). Males exhibited much lower postweaning 
(>2 years) survival rates than females (Fig. 2).

Using data from the traditional life table (Supplementary Data 
SD1), the overall (total) mortality for the population of LFPWs 
in New Zealand waters is estimated to be approximately 7.3% 
per annum. Using data from the sex-specific model life tables 
(Supplementary Data SD2 and SD3), the overall (total) mor-
tality is estimated to be 8.8% and 6.8% per annum for males 
and females, respectively. Both sexes showed slightly elevated 
rates of mortality among the youngest age-classes (<2 years) 
with postweaning mortality rates decreasing and remaining low 
until 11 years of age for males and 15 years of age for females 
(Supplementary Data SD2 and SD3; Fig. 3). Following which, 
mortality rates increase sharply in adult males and more gradu-
ally in adult females (Fig. 3).

Discussion
Firstly, it must be acknowledged that the demographic data 
presented in this study have been collected solely from strand-
ing events, which may not provide a true representation of the 
stable age distribution of the population. Stranded groups may 
represent subgroups rather than the entire pod, resulting in 
some individuals being missed in the sample by chance. It also 
is possible that some demographic subgroups are less likely 
to strand en masse, or more likely to survive stranding events 
and were therefore not sampled (Betty et al. 2022). In this 
study, age and sex were not always determined for all individ-
uals in large MSEs (Table 1). While this potential bias cannot 
be ignored, this study is based on a large, minimally biased 
sample (i.e., particular ontogenetic groups were not favored, 
except 2 out of 12 MSEs where adult males were targeted for 
gonadal sampling; see Betty et al. 2019) that likely reflects 

Fig. 1.—Age distribution of female (n = 227), male (n = 154), and unknown sex (n = 3) long-finned pilot whales (Globicephala melas edwardii) 
mass-stranded on the New Zealand coast between 2006 and 2017.
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the true age distribution of the MSEs, and also the local New 
Zealand population (Betty 2019). In a New Zealand context, 
mass-stranded LFPW groups are biased toward females, par-
ticularly within the adult age-classes, while a male bias is 
reported in juveniles (Betty 2019; Betty et al. 2020). However, 
the predominance of females also appears to be a common 
observation in groups of both captured (Sergeant 1962, Bloch 
et al. 1993b) and mass stranded (Martin et al. 1987; Betty et 
al. 2020; Ball et al. 2022) LFPWs globally. Despite potential 
selection bias with data derived from stranded individuals, the 
frequent MSEs of LFPWs on the New Zealand coast (in large 
groups of mixed ages and sexes; see Table 1 and Betty et al. 

2020) provides a valuable opportunity to collect demographic 
data.

Age structure.—The age structure of any population of ani-
mals at a given point in time is a factor of mortality and recruit-
ment into that population. The age-specific data set of LFPWs 
stranded on the New Zealand coast comprised immature and 
mature individuals of both sexes, though among the matures 
there were many more females than males (Table 1). The sam-
ple of stranded LFPWs in this study, and therefore the “popu-
lation” from which survival was estimated, resulted in different 
age structures for males and females, with very few (n = 12) 
males older than 20 years of age (Fig. 1).

The small proportion of males greater than 20 years in this 
dataset may be the result of older (mature) males being less 
likely to strand (or having a higher refloat success than other 
ontogenetic groups), possibly as a consequence of (1) the dis-
persal of older (mature) males from natal groups into male-only 
groups and/or (2) forming temporary associations with other 
matrilineal groups for breeding (Betty et al. 2019). Mature 
males may be unlikely to suffer MSE-related mortality when 
in groups other than their natal group (due to social bonds not 
being established or reinforced).   In addition, if male-only 
groups of LFPWs inhabit waters further offshore, they would 
be less likely to encounter land and subsequently strand, and 
they would also be unencumbered by calves and juveniles.

Based on limited genetic evidence, it has been proposed that 
while male LFPWs mostly remain within their natal group, 
they do not father calves within the group, suggesting at least 
some temporary male dispersal for mating purposes (Amos et 
al. 1993). Within the North Atlantic, occasional observations 
of male-only LFPW groups have been reported (Sergeant 
1962, Bloch 1992, Desportes et al. 1993) and the occurrence 
of “bachelor groups” have been well-documented in another 
odontocete species, the sperm whale  Physeter macrocepha-
lus (Best 1979; Jaquet et al. 2000; Lettevall et al. 2002).  Male 
dispersal could potentially explain the prevalence of females 
in groups of both captured (Sergeant 1962, Bloch et al. 1993b) 
and mass stranded (this study; Martin et al. 1987; Betty et al. 
2020; Ball et al. 2022) LFPWs. For G. m. edwardii, this is diffi-
cult to confirm due to the lack of observational and other avail-
able data on the subspecies. Further molecular studies, using 
samples collected from complete groups are required to enable 
a thorough assessment of the social structure of the species. 
However, there is some genetic evidence that MSEs of LFPWs 
on the coasts of Scotland, Tasmania, and New Zealand can con-
tain multiple matrilines in a single event (Oremus et al. 2013; 
Ball et al. 2022). Thus, it has been suggested that both LFPW 
subspecies form associations comprising multiple matrilineal 
groups (Oremus et al. 2013; Ball et al. 2022), as also supported 
by behavioural studies of G. m. melas in the north-west Atlantic 
(Ottensmeyer and Whitehead 2003; Augusto et al. 2017).

Alternatively, these stranding data may be representative of 
the population, with higher (natural or anthropogenic) mortal-
ity in males relative to females for all or part of their life span, 
resulting in females outnumbering males of a similar age (espe-
cially in adulthood). Reduced longevity of males, relative to 
their female conspecifics, is a common feature of mammalian 

Fig. 2.—Age-specific survivorship (lx) for male and female long-
finned pilot whales (Globicephala melas edwardii) mass-stranded on 
the New Zealand coast between 2006 and 2017. Points are based on 
traditional life table calculations (lx) and smoothed curves were fitted 
using the Siler model (Siler lx). Age-class = age x to x + 1.

Fig. 3.—Age-specific mortality rates (qx) for male and female long-
finned pilot whales (Globicephala melas edwardii) mass-stranded on 
the New Zealand coast between 2006 and 2017. Points are based on 
traditional life table calculations (qx) and smoothed curves were fitted 
using the Siler model (Siler qx). Age-class = age x to x + 1.
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populations, including LFPWs (Betty et al. 2022), and may be 
influenced by the interactions between sex-specific costs of 
sexual selection and local environmental conditions (Lemaître 
et al. 2020). In cetaceans, these include costs associated with 
social structure and sex differences in ranging patterns (Stolen 
and Barlow 2003), and mate selection in polygynous mating 
systems (Ralls et al. 1980). If male LFPWs do indeed emigrate 
from their natal group (and move between groups), males that 
travel alone or in small groups may be more vulnerable to pre-
dation (Stolen and Barlow 2003). Male LFPWs also display 
significant sexual size (males larger than females) and shape 
dimorphism, potential fitness-related traits that are energeti-
cally costly and associated with mate selection (Bloch et al. 
1993c; Betty et al. 2022).

It is also possible that higher male mortality may be related to 
disease and/or pollutant burden.  For example, sharp decreases 
in survival probabilities have been reported for G. m. melas in 
the Strait of Gibraltar following morbillivirus epizootics, which 
have also been linked to high organochlorine (OC) contaminant 
concentrations in this population (Lauriano et al. 2014, Pons et 
al. 2022). These morbillivirus outbreaks have been observed 
to affect sexes differently, with male LFPWs showing a more 
severe decrease in survival rate compared to females (Pons et 
al. 2022). This finding supports the idea that high OC concen-
trations could affect immunity, with females being less affected 
due to their ability to offload contaminants through pregnancy 
and lactation (Aguilar and Borrell 1988). With the exception of 
a recent study examining trace element concentrations (Lischka 
et al. 2021), very little information is available on the pollutant 
burden of G. m. edwardii in New Zealand waters. Further inves-
tigation is required to examine current levels of organochlo-
rine and other emerging contaminants in G. m. edwardii and to 
identify any population-level impacts.

Life tables, survivorship, and mortality rates.—Methods 
of estimating mortality rates from age-at-death data assume 
that age-specific fecundity and mortality are stable and that 
the exponential rate of increase has been, and is currently, 
zero (Caughley 1966; Caughley and Sinclair 1994; Evans and 
Hindell 2004). This assumption is difficult to validate—the age 
structures of real populations are often not stable, resulting in 
differing amounts of variation around life table parameters. To 
account for this variation, Caughley (1977) proposed a mini-
mum sample size of 150 for accurately estimating survival. It 
is often difficult to obtain such large sample sizes for cetaceans 
but it was possible in this study due to the high frequency of 
LFPW MSEs on the New Zealand coast (Betty et al. 2020). 
Further, long-lived species such as delphinids are buffered 
from perturbations from stable age distribution due to their 
long reproductive period and high rates of survival (Stolen and 
Barlow 2003). The age-at-death data reported here are based on 
an 11-year time series that also acts to average out the devia-
tions that might be present in any given year.

In populations that are not stationary, vertical estimates of 
survivorship (i.e., based on the age structure of a population 
at a specific point in time) overestimate mortality rates when 
compared to those derived from a horizontal perspective (i.e., 

based on the fate of a cohort followed through time; Olesiuk 
et al. 1990; Evans and Hindell 2004). Apparent changes in the 
mortality of older groups are influenced not only by the deaths 
of older individuals but also by changes in the initial sizes of 
cohorts through time. The extent of this bias is a function of the 
true mortality rate and the population growth rate (Evans and 
Hindell 2004). It is recognized that the survival and mortality 
rates presented here are tentative; nevertheless, they still pro-
vide a basis for relative comparisons between (sub)species and 
populations.

The overall survival curve for G. m. edwardii in New Zealand 
waters (Fig. 2) is typical of mammals and other long-lived spe-
cies (Spinage 1972; Stolen and Barlow 2003). The sex-specific 
survival curves show that females have higher postweaning 
(Betty 2019) survival rates relative to males after 2 years of age, 
with the difference being particularly marked around the age 
of 20 years. Mortality curves created from these life table data 
using the Siler model (Fig. 3) approximate the typical U-shaped 
curves of other large mammals (Caughley 1966; Spinage 1972) 
but with lower than expected mortality in animals younger than 
2 years old. Again, there are differences between the sexes with 
males displaying higher mortality rates in the adult years.

Large differences in mortality with age and sex occur in many 
mammals. Higher mortality among the very young has been 
observed in both terrestrial (Caughley 1966) and marine mam-
mals. For example, high neonate mortality has been reported 
for New Zealand sea lions (Phocarctos hookeri, neonatal mor-
tality rate = 0.14; Castinel et al. 2007) and cetaceans such as 
Atlantic spotted dolphins (Stenella frontalis, yearling mortality 
rate = 0.24; Herzing 1997) and common bottlenose dolphins 
(Tursiops truncatus, yearling mortality rate = male: 0.11 and 
female: 0.08; Stolen and Barlow 2003). Causes of high calf 
mortality in cetaceans are difficult to identify, though it is likely 
that factors such as nutrition, social interactions, predation pres-
sures, and maternal transfer of pollutant load have compound-
ing effects (Stolen and Barlow 2003; Wells et al. 2005). High 
neonate and calf mortality has been reported for LFPWs (G. m. 
melas) captured in drive fisheries in the Faroe Islands (yearling 
mortality rate = female: 0.15; Bloch et al. 1993a), but was not 
as pronounced for SFPWs captured in drive fisheries in Japan 
(yearling mortality rate = male: 0.10 and female 0.07; Kasuya 
and Marsh 1984), or stranded LFPWs in the current study (first-
year mortality rate = male: 0.08 and 0.06: female). It would 
usually be expected that the actual proportion of calves dying 
in the population may be underestimated by the number of sin-
gle-stranded or beach cast carcasses recorded due to the more 
rapid decomposition, greater vulnerability to predation, and the 
lower detection probability of small-sized animals (Stolen and 
Barlow 2003). However, age data in this study were predomi-
nantly obtained from live MSEs, which (although still poten-
tially biased) are likely to be representative of the free-ranging 
groups (Sergeant 1982).

Overall (total) average annual mortality rates for G. m. 
edwardii (males 8.8% and females 6.8%) are comparable to 
those previously estimated for G. m. melas (males ~8% and 
females ~7%; Bloch et al. 1993a). However, SFPWs appear 
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to have considerably lower overall female mortality rates than 
LFPWs (total average annual mortality rates: males 8.3% 
and females 4.5%; Kasuya and Marsh 1984). Female SFPWs 
caught in Japanese drive fisheries show high juvenile mortality, 
followed by a period of lower mortality during prime repro-
ductive years, and then a higher mortality rate in the postre-
productive or senescent years (>40 years of age; Kasuya and 
Marsh 1984; Ellis et al. 2018b). In contrast, the results of this 
study suggest that female G. m. edwardii show a pattern of 
mortality more similar to G. m. melas. Both LFPW subspecies 
do not exhibit a pronounced period of relative stability and low 
mortality during midlife—rather, they show a relatively stable 
period of low mortality until their teens, followed by a steady 
decline with age (in a similar manner to the males; Bloch et al. 
1993a; Ellis et al. 2018b).

The greatest decrease in survival rate of mature female G. m. 
edwardii occurred between 20 and 30 years of age (this study), 
compared to between 30 and 40 years for mature female G. 
m. melas (Bloch et al. 1993a), which may be explained by 
their relative longevity (i.e., G. m. edwardii: 38 years vs. G. m. 
melas: 59 years; Betty et al. 2022). For species that have been 
reported to live longer, for example, female SFPWs (longev-
ity 64.5 years) and resident killer whales (longevity 80 years), 
a relatively stable rate of survival was observed during adult-
hood, followed by a decrease in survival between the ages of 
30 and 45 years (Kasuya and Marsh 1984; Olesiuk et al. 1990). 
However, both SFPWs and resident killer whales appear to 
have selected for an extension of the postreproductive life span 
(Foote 2008). The proportion of the adult life span that is post-
reproductive (postreproductive representation; PrR) is 0.31 in 
resident killer whales and 0.26 in SFPWs (Kasuya and Marsh 
1984; Foote 2008; Ellis et al. 2018a, 2018b). In contrast, no sig-
nificant PrR (0.002), but rather an acceleration in the mortality 
rate, is observed in G. m. melas (Bloch et al. 1993a; Ellis et al. 
2018a, 2018b).

The observed variation in life-history strategies between 
the two pilot whale species may in part be due to the social 
organization within stable social groups and the benefits of 
cooperative foraging and multigenerational transfer of infor-
mation (Marsh and Kasuya 1984; Whitehead 2015; Ellis et al. 
2018b; Betty 2019). The social structure of pilot whale pods 
is thought to be similar to that of killer whales (Olson 2018) 
but the reason for the observed differences in the acceleration 
of mortality rates and postreproductive life spans between the 
two pilot whale species has not been established (Foote 2008; 
Ellis et al. 2018b). Other species with longevity closer to G. m. 
edwardii (e.g., common bottlenose dolphins from the Indian 
River Lagoon system, longevity 35 years; Stolen and Barlow 
2003) also do not show a stable period of low mortality during 
midlife, but instead a gradual decline and greatest decrease in 
survival between 20 and 30 years. Increases in birth-related 
mortality, susceptibility to predation due to the care and pro-
tection of young and greater energetic demands on females 
associated with gestation and lactation may affect the survival 
of females in the later reproductive years, as suggested for 
sperm whales (Evans and Hindell 2004). Overall, there is still a 

considerable amount to learn about the interplay between odon-
tocete population dynamics, social structure, and life history.

This 11-year study is the first comprehensive demographic 
assessment of the Southern Hemisphere LFPW and provides 
essential information to parameterize future population via-
bility assessments. In a changing world, information on pop-
ulation demography and age- and sex-specific survival rates 
will be an increasingly important part of conservation status 
assessments (Arso Civil et al. 2019). Demographic data, when 
collected in a standardized and comprehensive manner, offer 
an ability to assess changes in population parameters over time, 
providing essential information for conservation management. 
The approach used in this study is broadly applicable to data 
gathered by stranding networks in other areas. With dedicated 
collection of life-history samples, similar age- and sex-specific 
survival models can be developed for other cetacean popula-
tions and used to explore the impacts of environmental change.
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Correction

Correction to: Age- and sex-specific survivorship of the Southern 
Hemisphere long-finned pilot whale (Globicephala melas edwardii)

This is a correction to: Emma L Betty, Karen A Stockin, 
Bethany Hinton, Barbara A Bollard, Mark B Orams, Sinéad 
Murphy, Age- and sex-specific survivorship of the Southern 
Hemisphere long-finned pilot whale (Globicephala melas 
edwardii), Journal of Mammalogy, 2022, gyac085, https://doi.
org/10.1093/jmammal/gyac085

In the originally published version of this manuscript, some 
corrections were incorrectly incorporated, including a paragraph 
of text which was incorrectly inserted into the Materials and 
Methods section. The paragraph: “It is also possible that higher 
male mortality may be related to disease and/or pollutant burden. 
For example, sharp decreases in survival probabilities have been 
reported for G. m. melas in the Strait of Gibraltar following mor-
billivirus epizootics, which have also been linked to high organo-
chlorine (OC) contaminant concentrations in this population 

(Lauriano et al. 2014, Pons et al. 2022). These morbillivirus 
outbreaks have been observed to affect sexes differently, with 
male LFPWs showing a more severe decrease in survival rate 
compared to females (Pons et al. 2022). This finding supports 
the idea that high OC concentrations could affect immunity, with 
females being less affected due to their ability to offload con-
taminants through pregnancy and lactation (Aguilar and Borrell 
1988). With the exception of a recent study examining trace ele-
ment concentrations (Lischka et al. 2021), very little information 
is available on the pollutant burden of G. m. edwardii in New 
Zealand waters. Further investigation is required to examine cur-
rent levels of organochlorine and other emerging contaminants 
in G. m. edwardii and to identify any population-level impacts. ” 
should appear in the Discussion section.

This error has been corrected online.
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