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Abstract
Marker-assisted selection requires the identification of molecular markers associated with major genes and quantitative trait

loci (QTLs). In this study, we used 167 doubled haploid lines derived from two unregistered spring wheat (Triticum aestivum L.)
parental lines that belong to the Canada Western Special Purpose wheat market class to map QTLs associated with five traits
using inclusive composite interval mapping (ICIM). Using ICIM, the least-squares means phenotype data across three to four
environments, and a genetic map of 2676 single-nucleotide polymorphisms (SNPs) out of the wheat 90K SNP array, we identified
10 QTLs associated with days to maturity (4A and 5B), plant lodging (4B, 5A, 5D, and 7D), grain yield (2D), leaf rust (4A), and
stem rust (1A and 2B). Each QTL individually explained 6.0%–22.3% of the phenotypic variance and together accounted for
8.6%–38.2% of the total variance per trait. Two of the QTLs associated with rusts (QLr.dms-4A and QSr.dms-1A) had a minor effect
(6.0%–9.0%), whereas the second QTL for stem rust (QSr.dms-2B) had a major effect (22.3%). Although chromosome 2B harbors
multiple disease resistance QTLs, the physical location of QSr.dms-2B has not been reported in previous studies. Results from
this study provide additional valuable information to wheat researchers; in particular, the area on chromosome 2B should be
considered for future analyses.

Key words: Triticum aestivum L., leaf rust, stem rust, Canada Western Special Purpose wheat, 90K SNP array

Résumé
La sélection assistée par marqueur exige qu’on identifie les marqueurs moléculaires associés aux principaux gènes et locus

quantitatifs (QTL). Les auteurs ont recouru à 167 lignées à haploïdie double issues de deux lignées parentales non homologuées
de blé de printemps (Triticum aestivum L.) de la catégorie « blé de l’Ouest canadien à des fins spéciales » (CWSP) pour situer les
QTL liés à cinq caractères par cartographie d’inclusion des intervalles composés (ICIM). En recourant à l’ICIM, aux données
phénotypiques (moyenne des moindres carrés) dans trois ou quatre environnements et à la carte génétique de 2 676 SNP sur
un ensemble de 90 000 SNP, les auteurs ont identifié dix QTL associés au nombre de jours jusqu’à la maturité (4A et 5B),
à la verse (4B, 5A, 5D et 7D), au rendement grainier (2D), à la rouille de la feuille (4A) et à la rouille de la tige (1A et 2B).
Chaque QTL expliquait 6,0 à 22,3 % de la variance du phénotype et, collectivement, 8,6 à 38,2 % de la variance globale pour
chaque caractère. L’effet de deux des QTL associés à la rouille (QLr.dms-4A et QSr.dms-1A) n’était que secondaire (6,0 à 9,0 %),
mais le deuxième QTL de la rouille de la tige (QSr.dms-2B) avait un effet majeur (22,3 %). Bien que le chromosome 2B porte de
nombreux QTL de résistance à la maladie, l’emplacement du locus QSr.dms-2B n’avait encore jamais été signalé. Les résultats
de cette étude procureront des informations précieuses à ceux qui poursuivent des recherches sur le blé, en particulier sur la
partie du chromosome 2B, sur laquelle les analyses ultérieures devraient s’attarder. [Traduit par la Rédaction]

Mots-clés : Triticum aestivum L., rouille de la feuille, rouille de la tige, blé de l’Ouest canadien à des fins spéciales, jeu de 90 000
SNP

Introduction
Wheat (Triticum aestivum L.) is a major crop in Canada with

an estimated total production of 35.2 million tonnes (Mt) in
2020 (Statistics Canada 2020) of which 19.6 Mt was exported.
To support the strong demand for modern wheat varieties

(cultivars) across 17 market classes (10 classes in western and
7 classes in eastern Canada), breeders in both the public and
private sectors have registered 591 cultivars from 1961 to
2020, which include 336 spring wheat, 205 winter wheat, and
50 durum wheat cultivars (CFIA 2021). Most Canadian spring
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and durum wheat are grown in Alberta, Saskatchewan, and
Manitoba, which account for over 90% of the total wheat pro-
duction in the country (https://www150.statcan.gc.ca/n1/pub/
95-634-x/2017001/article/54904-eng.htm). The Canadian Food
Inspection Agency (CFIA), with the recommendations from
the Prairie Grain Development Committee (PGDC), is respon-
sible for the registration of cultivars. CFIA requires that each
candidate cultivar for registration be evaluated in compari-
son to appropriate check varieties for various traits (depend-
ing on the market class) of which maturity, plant height, lodg-
ing tolerance, grain yield, grain protein content (GPC), test
weight, thousand kernel weight, and resistance to five prior-
ity diseases are mandatory across all market classes (PRCWRT
2018).

Stem, leaf, and stripe rusts caused by Puccinia graminis f.
sp. tritici (Pgt), P. triticina f. sp. tritici (Ptr), and P. striiformis
f. sp. tritici (Pst), respectively, are three of the five priority
wheat diseases in western Canada. They are responsible for
major losses in grain yield and quality. Leaf rust is the most
common rust disease of wheat in western Canada annually,
and its severity fluctuates every year (McCallum et al. 2021).
Stripe rust has been detected in western Canada every year
since 2000 with areas reporting serious epidemics in 2005,
2006, and 2011 (McCallum et al. 2007; Randhawa et al. 2012).
Multiple stem rust epidemics have been reported in Canada
in the early 1900s and from 1953 to 1955, which caused a
loss of hundreds of millions of dollars (Peturson 1958). The
severity of rusts can be reduced through agronomic manage-
ment practices, the application of foliar fungicides, and the
development of resistant cultivars (Wegulo 2012). The devel-
opment of resistant cultivars is a more economical and en-
vironmentally friendly approach to controlling rusts. How-
ever, breeding for disease resistance is often challenging due
to (i) the need to pyramid different sources of resistance to
all three rust diseases, and (ii) the qualitative and quantita-
tive inheritance of resistance to the rust diseases (Pinto da
Silva et al. 2018) complicates the selection process. Qualita-
tive resistance is controlled by a single gene with a major
effect, which is effective against a subset of races. These ma-
jor genes confer vertical resistance and tend to be expressed
from seedling to adult plant stages, but tend to lose their
effectiveness over time due to changes in pathogen popula-
tions. On the other hand, quantitative resistance is a partial
level of resistance controlled by genes with incomplete re-
sistance, which are more durable but can require the intro-
gression of multiple genes or quantitative trait loci (QTLs).
Quantitative resistances are expressed at later growth stages
and provide adult plant resistance (Pilet-Nayel et al. 2017;
Pinto da Silva et al. 2018; Rollar et al. 2021). Currently, a to-
tal of 61 stem rust, 80 leaf rust, and 83 stripe rust resistance
genes have been identified in bread wheat, durum wheat,
and their relatives (McIntosh et al. 2020). Most of these re-
sistance genes are race-specific (qualitative), but a few are
known to confer partial (quantitative) resistance at the adult
stage, such as Lr34, Lr46, and Lr67. These genes are part of
the complexes Lr34/Yr18/Sr5/Pm38, Lr46/Yr29/Sr58/Pm39, and
Lr67/Yr46/Sr55/Pm46 that confer resistance to leaf rust/stripe
rust/stem rust/powdery mildew (Pinto da Silva et al. 2018). For
stem rust, it was reported that on average a combination of

four to five minor genes reduced stem rust severity to negligi-
ble levels at maturity (Singh et al. 2011). Little is known about
nonspecific stem rust resistance genes beyond the above com-
plexes. Most cultivars rely on combination of Sr2 and other
unknown slow rusting resistance genes for durable resistance
to stem rust in Canada, the USA, and Australia (Singh et al.
2011).

Improved cultivars can be developed using multiple con-
ventional breeding methods and marker-assisted selection
(MAS). MAS is an indirect selection method that requires
mapping genes and major effect QTLs associated with tar-
get traits, which involves developing (assembling) appropri-
ate populations followed by coarse mapping, fine mapping,
validation, and the development of high-throughput, repro-
ducible, and breeder-friendly molecular markers (Collard et
al. 2005; Schaid et al. 2018; Platten et al. 2019; Jaganathan
et al. 2020). There have been continuous efforts to map and
characterize genes and QTLs associated with target traits of
interest using diverse linkage-based analysis (LA). As reviewed
by different authors (Collard et al. 2005; Semagn et al. 2010;
Gupta et al. 2019), the LA method includes simple interval
mapping, composite interval mapping, inclusive composite
interval mapping (ICIM), and multiple interval mapping (Kao
et al. 1999; Li et al. 2010; Akond et al. 2019), which all depend
on well-defined biparental populations, such as Fx-derived
families, backcross, near-isogenic lines (NILs), doubled hap-
loids (DHs), and recombinant inbred lines (RILs). Such types
of mapping populations are often developed by crossing two
parents with contrasting phenotypic trait(s) of interest. Al-
though LA is the most widely used method since the early
1990s, it has four major drawbacks: (1) the time and cost of
developing the mapping populations, (2) the low resolution
of the method due to a limited number of recombination
events, (3) the use of old populations developed five or more
years before the mapping studies, and (4) the biparental pop-
ulations capture only alleles originated from their parents.

Our group at the University of Alberta conducted multiple
studies to map genes and QTLs in RILs derived primarily from
the Canada Western Red Spring (CWRS) class on agronomic
traits (Semagn et al. 2021a, 2021b) and reaction to diseases
(Perez-Lara et al. 2017; Zou et al. 2017; Bemister et al. 2019).
However, we have not conducted any mapping study in bi-
parental populations derived from the Canada Western Spe-
cial Purpose (CWSP) wheat market class, which forms the ba-
sis in the present study. Advanced breeding lines and culti-
vars in the CWSP class produce high grain yield with high
starch content but low GPC, and are considered desirable for
ethanol production and animal feed (Canadian Grain Com-
mission 2021). The objective of the present study was to map
QTLs associated with leaf and stem rust resistance and major
agronomic traits using ICIM.

Materials and methods

Phenotyping
This study was conducted on 167 DH lines derived from a

cross between “HYAYT12-10” and “GP146” using the wheat–
maize hybridization method (Sadasivaiah et al. 1999). Both
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parents are unregistered lines that belong to the CWSP
class. “HYAYT12-10” is an advanced breeding line from the
University of Alberta breeding program, which was derived
from a cross between “Hidhab” and “AC Andrew”. “Hidhab”
was extracted from “HD1220/3∗Kal/Nac CM40454” and char-
acterized by a relatively good level of resistance to leaf,
stem, and stripe rusts, an average grain yield with a rel-
atively high GPC, strong gluten, late maturing, and well
adapted to drought (Aissaoui and Fenni 2021). “AC Andrew”
is a DH cultivar developed by Lethbridge Research Center
from “Dirkwin”/“SC8021V2”//“Treasure”/“Blanca” and char-
acterized by higher grain yield, high lodging tolerance, re-
sistance to the prevalent races of stripe rust, stem rust,
and powdery mildew, and moderately resistant to leaf rust
(Sadasivaiah et al. 2004). “GP146” is a high grain yielder
with a soft white grain developed from a cross between
“Bhishaj” (Randhawa et al. 2011) of Agriculture and Agri-
Food Canada (AAFC) and a synthetic line “SKAUZ”/“PASTOR”/
3/“CROC_1”/“AE.SQUARROSA(224)”//“OPATA” from the Inter-
national Maize and Wheat Improvement Center (CIMMYT).
The DH population was originally chosen to explore QTL
for stripe rust resistance, based on observations made at
a contra-season nursery in New Zealand in the winter of
2015. However, stripe rust nurseries using the prevailing
races in western Canada showed insufficient variation in re-
sistance/susceptibility for further study.

The DH lines, the two parents, and four CWSP checks
(“AAC Awesome”, “Pasteur”, “AC Andrew”, and “Sadash”)
were planted in hill plots in disease nurseries using a random-
ized complete block design with two replications. Hills were
seeded with 1 g of seed at a spacing of 20–30 cm between hills.
Reaction to both leaf and stem rust was evaluated in 2016,
2017, and 2018 in Morden, Manitoba, Canada. Leaf rust was
also evaluated for 2 years in 2016 and 2017 at the University of
Alberta South Campus Research Station, Edmonton, Alberta.
At each location, urediniospores of both rusts were collected
from infected plants in nurseries in mid-August of the previ-
ous year and frozen in −80 ◦C in 1.5 mL vials until needed
for inoculation in June of next year. Urediniospores were re-
covered from −80 ◦C on the day of inoculation, allowed to
acclimate for a few minutes, heat shocked in a 42 ◦C water
bath, and suspended in 2 L of Soltrol 170. To create homoge-
neous disease epidemics within each trial, plants were inoc-
ulated at the five- to six-leaf stage (Zadok’s 15–16) in the early
evening using a low-volume sprayer. The nursery was inocu-
lated a second time about 3–5 days later and for a third time
after another 3–5 days. Visual disease assessment was done
using a scale of 1 (no visible sign or symptom = resistant) to
9 (leaf area totally covered with spores = highly susceptible)
on each hill plot basis. The disease severity was rated when
the susceptible checks (“AC Barrie” and “Park”) had many pus-
tules, the moderate check (“Peace”) had fewer pustules, and
the resistant check (“Carberry”) appeared uninfected. Reac-
tion to stem rust was also scored in the same way as the leaf
rust except that “Hoffman HRF” was used as the susceptible
check, “Columbus” as an intermediate check, and “Glenn” as
the resistant check. “HYAYT12-10” showed resistant and mod-
erately resistant reactions to rusts, while “GP146” showed in-
termediate to moderate susceptibility to rusts.

The DH population, parents, and the four CWSP checks
were also evaluated for agronomic traits in conventionally
managed fields both at the University of Alberta South Cam-
pus Research Station, Edmonton, AB and at the Lethbridge
Research and Development Centre, Lethbridge, AB in both
2016 and 2017. All agronomic trials were conducted using a
randomized incomplete block design, with two replications.
Plots were 3.0 × 1.0 m2, with six rows of 19 cm apart, and
seeded in mid-May of every year at a rate of 300 seeds m−2.
Weeds were controlled using registered herbicides following
local recommendations and label directions. The 4-year crop
rotation in conventional land was a rotation of two-row bar-
ley (Hordeum vulgare L.), canola (Brassica napus L.), field pea
(Pisum sativum L.), and wheat. Each entry was evaluated for
plant lodging, days to maturity, and grain yield. Lodging score
was recorded on a plot basis at the time of harvest on a 1-to-9
scale, with 1 and 9 representing no lodging and completely
lodged, respectively. Days to maturity from the time of seed-
ing were scored when more than 50% of the peduncles in a
plot turned yellow. Plots were individually harvested with a
small plot Wintersteiger Nursery Elite combine. Seed was col-
lected into cotton bags and dried for 4 days using an indus-
trial dryer at 80–90 ◦F for 4–5 days after harvest. Each bag
of grain was cleaned with a Pfeuffer four-sieve seed cleaner.
Yield per plot was recorded in kg and converted to t ha−1.

DNA extraction and genotyping
Seedlings from the two parents and the DH lines were

raised in a growth chamber until the three- to four-leaf stage.
Genomic deoxyribonucleic acid (DNA) was extracted from
seedlings collected at three- to four-leaf stage using a mod-
ified cetyl trimethylammonium bromide method (Doyle and
Doyle 1987). DNA quality was checked by running an aliquot
on 0.8% agarose gel stained with SYBR� Safe. The DNA con-
centration was normalized to approximately 100 ng μL−1

after being assessed with a NanoDrop ND-1000 spectropho-
tometer (Thermo Scientific, USA). Fifty microliters of each
DNA sample were sent to the National Research Council
(NRC) in Saskatoon, Saskatchewan. The samples were geno-
typed by the NRC with the Illumina 90K Infinium Wheat Ar-
ray (Wang et al. 2014).

Data analysis: phenotype and genotype
For each trait, F statistics and least-squares means were

computed across all environments using a mixed linear
model in R, software v3.5.2. Parameters were estimated by
the restricted maximum likelihood method with the nlme
package using the lme function. A mixed-effects analysis of
variance approach was used to estimate least-squares means
for each entry. The observed variable was explained with the
linear model:

ϒt jqk = μt + Gjt + Et j + (G × E )t jk + Bt jqk + ε jqkt

in which ϒjqkt is the response observed in trait t of entry j in
block q in environment k, μt is the overall mean effect of trait
t, Gjt is the effect of the genotype of j on trait t, Etj is the effect
of environment on trait t in entry j, (G × E)tjk is the interaction
effect of genotype and environment on trait t in entry j in en-
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vironment k, Btjqk is the blocking effect on trait t of entry j in
block q in environment k, and εjqkt is the residual error. Geno-
types (G) were considered fixed, while environments (E), repli-
cations, blocks (B) within replications, and G × E interactions
were considered as random effects. Broad-sense heritability
was computed using multi-environment trial analysis with
R for Windows (MetaR) v.6.04 (Alvarado et al. 2020). Test for
normality on the least-squares means, box plots, frequency
distribution plots, and Pearson correlation coefficient plots
from the phenotype data were generated using the nlme
package in RStudio Version 1.1.4 (R Core Team 2020; RStudio
Team 2020).

The 90K genotype data were filtered as described in a pre-
vious study (Xiang et al. 2021). First, we removed all single-
nucleotide polymorphisms (SNPs) that were monomorphic
between the two parents, missing or heterozygous in both
parents, and those with greater than 20% missing data in
the DH lines. This initial stage of filtering resulted in 4799
SNPs for linkage analysis. We performed linkage analysis us-
ing JoinMap v4.0 (Van Ooijen 2006) and further excluded all
markers that showed segregation distortion at p < 0.01, and
those that were either unlinked or formed a linkage group
(LG) with <5 markers using a minimum logarithm of odds
(LOD) score of 3, a recombination frequency of 0.35, and
Kosambi mapping function (Kosambi 1943). We finally re-
tained 2676 SNPs for map construction using MapDisto for
Windows v2.1.7.10 (Heffelfinger et al. 2017). For each SNP, we
obtained the International Wheat Genome Sequence Consor-
tium (IWGSC) RefSeq v2.0 information from https://urgi.versa
illes.inrae.fr as described in our previous study (Semagn et al.
2021a). The SNP genotype data and physical information were
then sorted using chromosome name and physical position
in ascending order (this is a step required to obtain the cor-
rect marker order). We then created a temporary new SNP ID
that consisted of “Chr” as a prefix for chromosome, followed
by 01 to 21 to represent each chromosome, and the physical
positions in bp (e.g., Chr01-29183813 to represent the first
SNP on chromosome 1A that mapped at 29 183 813 bp). In
cases where two or more SNPs on the same chromosome had
the same physical position, we added 1 bp to avoid duplicates
and make each position unique to serve as SNP ID. We then
loaded the SNP data with the new SNP ID into MapDisto and
constructed linkage map using “Extract LG’s from loci” op-
tion. The latter option generates linkage maps based on the
predefined LGs using the physical positions for locus order-
ing and converting the positions into cM.

QTL mapping
ICIM was performed on the least-squares means of each

trait, and both the genetic map in cM and the physical map
in kilobase pair (kb) using QTL IciMapping version 4.2.53 (Li
et al. 2007; Meng et al. 2015) with the following parameters:
mean replacement for missing phenotypic data, a minimum
LOD score of 3.0, and an additive model to determine the
effect of individual QTL. The walking distance was set to 1
cM for genetic maps and 2 kb for physical maps. In cases
where two or more QTLs were detected for the same trait
with an overlapping confidence interval or common flanking

markers, only one of them was retained. QTLs that explained
<10%, 10%–20%, and >20% of the phenotypic variation were
arbitrarily classified into minor, moderate, and major effects,
respectively. QTL names were assigned by following the In-
ternational Rules of Genetic Nomenclature (http://wheat.pw
.usda.gov/ggpages/wgc/98/Intro.htm), which consisted of trait
acronym, lab designation (dms = Dean Michael Spaner), and
chromosome number. MapChart v2.1 (Voorrips 2002) was
used to construct genetic maps and QTL graphs.

Results

Phenotypic and genetic variation
“HYAYT12-10” matured about 3 days later, yielded 740 kg

ha−1 more grain, and was more tolerant to lodging, and resis-
tant to both leaf and stem rust than “GP146” (Table 1). The 167
DH lines required 105–112 days to mature, varied in lodging
score from 1 to 5, and yielded 4.6–6.8 t ha−1 grain. The av-
erage leaf and stem rust scores in the DH lines varied from
1.2 to 8.8 with an overall average score of 3.5 for leaf rust
and 3.8 for stem rust. Of the 167 DH lines, only 10 DH lines
produced more grain yield, 11 lines were more resistant to
leaf rust, and 15 lines were more resistant to stem rust than
the high-yielding and rust-resistant parent “HYAYT12-10” (6.3
Mg ha−1, with scores of 1.5 for both leaf and stem rust). The
genotype effect was significant (p < 0.05) in the model for all
traits. Broad-sense heritability was moderate to high, which
varied from 0.41 for maturity to 0.78 for leaf rust. The phe-
notypic distribution of least-squares means averaged across
all environments was normal (p < 0.05) for both maturity
and grain yield but skewed for lodging score, leaf rust, and
stem rust (Fig. 1) with most of the DH lines showing moder-
ate scores in all three traits. Statistically significant (p < 0.05)
correlations were observed only between maturity and lodg-
ing (−0.33) and between leaf and stem rust (0.88) (Fig. 2).

Inclusive composite interval mapping
Of the wheat 90K iSelect array used for genotyping the

DH population, we integrated 2676 SNPs in the final genetic
maps (Table 2). The number of mapped markers per chromo-
some varied from 35 on chromosome 6D to 379 on 3B with an
overall average of 127 SNPs per chromosome. ICIM identified
a total of 10 QTLs (Table 3 and Fig. 3) associated with maturity
(2), lodging (4), grain yield (1), leaf rust (1), and stem rust (2).
The two QTLs for maturity were mapped at 524 cM on chro-
mosome 4A (QMat.dms-4A) and at 2171 cM on 5B (QMat.dms-
5B), which explained 10.8% and 12.0% of the phenotypic vari-
ance, respectively. The four QTLs associated with plant lodg-
ing were mapped at 1517 cM on chromosomes 4B (QLdg.dms-
4B), at 538 cM on 5A (QLdg.dms-5A), at 568 cM on 5D (QLdg.dms-
5D), and at 1102 cM on 7D (QLdg.dms-7D). Each QTL for lodg-
ing explained from 7.7% to 12.2% and together accounted for
38.2% of the phenotypic variance. The single QTL associated
with grain yield was mapped at 1221 cM on chromosome 2D
(QYld.dms-2D) that explained 8.6% of the phenotypic variance.
DH lines that were homozygous for the HYAT12-10 alleles at
the two flanking markers of QYld.dms-2D yielded on average
250 kg ha−1 more grain than those with the “GP146” alleles.
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Table 1. Summary of descriptive statistics of observed maturity, lodging, grain yield, leaf rust, and stem rust of parents and
the “HYAYT12-10/GP146” doubled haploid (DH) population over combined environments.

Parents DH lines F statistics

Trait “HYAYT12-10” “GP146” Differencea Range Mean ± Std F-value p-Value Broad-sense heritability

Maturity (days) 110.2 106.8 − 3.43 104.8–111.6 108.3 ± 1.50 3.20 <0.0001 0.41

Lodging (1–9) 1.52 4.84 3.32 1.17–5.01 2.59 ± 0.87 9.30 <0.0001 0.64

Yield (tha) 6.26 5.52 − 0.74 4.62–6.79 5.72 ± 0.36 2.50 <0.0001 0.47

Leaf rust (1–9) 1.50 5.10 3.60 1.20–7.80 3.48 ± 1.80 23.7 <0.0001 0.78

Stem rust (1–9) 1.50 7.00 5.50 1.20–8.80 3.79 ± 1.98 20.1 <0.0001 0.68

aDifference = “GP146” − “HYAYT12-10”.

Fig. 1. Frequency distributions of least-squares means of 167 doubled haploid (DH) lines derived from “HYAYT12-10”/“GP146”.

The single QTL detected for leaf rust was mapped at 3127
cM on chromosome 4A (QLr.dms-4A) and accounted for 9.0%
of the phenotypic variance. DH lines that were homozygous
for the “HYAT12-10” alleles at the two flanking markers of
QLr.dms-4A had on average lower leaf rust values by 1.6 points
on the 1–9 scale than those with the GP146 alleles. The two
QTLs associated with stem rust were mapped at 1305 cM on
chromosomes 1A (QSr.dms-1A) and at 3143 cM on 2B (QSr.dms-

2B), which accounted for 6.0% and 22.3% of the phenotypic
variance, respectively. DH lines that were homozygous for the
“HYAT12-10” alleles at the two flanking markers for QSr.dms-
1A and QSr.dms-2B had on average 1.7 and 1.9 lower stem rust
scores than those with the “GP146” alleles. Overall, all QTLs
detected in the present study explained from 8.6% to 38.2%
of the total phenotypic variance per trait, so most of the vari-
ation in all five traits remained unexplained.
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Fig. 2. Scatter plots showing Pearson correlation coefficients for lodging vs. maturity and leaf rust vs. stem rust in a doubled
haploid population derived from “HYAYT12-10”/“GP146” based on least-squares means computed from all environments.

Table 2. Summary of 2767 single-nucleotide polymorphism
(SNP) markers incorporated in the final linkage maps.

Chromosome No. of SNPs Map length (cM) Map length (Mb)

1A 75 2231.2 598.1

1B 142 3795.4 700.5

1D 49 1797.3 497.1

2A 164 5345.1 786.2

2B 109 4517.8 808.1

2D 54 2051.6 621.6

3A 122 3748.7 745.3

3B 379 3253.5 851.9

3D 56 2698.4 613.5

4A 169 4775.2 748.0

4B 156 2701.8 665.6

4D 39 2118.3 508.1

5A 148 2920.0 708.1

5B 332 2923.3 713.3

5D 61 1991.6 568.7

6A 244 3420.0 622.5

6B 56 3016.5 727.6

6D 35 1909.3 493.7

7A 145 3830.7 744.2

7B 96 3112.3 763.3

7D 45 2084.6 640.4

Total 2676 64 242.5 14 125.7

Discussion
The present study employed 167 DH lines derived from

“HYAYT12-10”/“GP 146”, which are unregistered lines belong-
ing to the CWSP class. We uncovered a total of 10 QTLs, of
which 7 were associated with agronomic traits and 3 with leaf
and stem rusts. The development of early maturing wheat
cultivars is always a priority in the northern areas of the
world (including the Canadian prairies) where frosts can
damage crops due to a short growing season (Semagn et al.
2021b). Our study identified two moderate effect QTLs for ma-

turity at 29.2–29.8 Mb on chromosome 4A (QMat.dms-4A) from
“HYAYT12-10” and at 581.5–583.5 Mb on 5B (QMat.dms-5B)
from “GP146” (Table 3). QTLs for maturity have been reported
across several wheat chromosomes, including 4A (McCartney
et al. 2005b; Kamran et al. 2013; Perez-Lara et al. 2016;
Semagn et al. 2021b) and 5B (Kamran et al. 2013; Semagn et
al. 2021b). One of the minor effect maturity QTLs reported
on chromosome 4A (QMat.dms-4A.1) by Perez-Lara et al. (2016)
was flanked by CAP12_rep_c4000_432 and Ra_c7973_1185 SNPs,
which are physically located at 24.6 and 37.0 Mb, respectively.
The physical confidence interval of that QTL overlaps with
the QMat.dms-4A identified in the present study.

Using the IWGSC RefSeq v2.0 physical map, Semagn et al.
(2021b) recently investigated four spring wheat populations
and reported the physical positions of eight QTLs for head-
ing, flowering, and maturity on chromosomes 5B, which in-
dividually accounted for 1.8%–19.3% of the phenotypic vari-
ance. One of those QTLs was coincidentally associated with
heading (QHd.dms-5B.3), flowering (QFlt.dms-5B.2), and matu-
rity (QMat.dms-5B.2), which was mapped at 574.5–577.0 Mb.
Vrn-B1 (gene ID: TraesCS5B02G396600) is one of the major
genes affecting vernalization response and flowering time in
wheat (Santra et al. 2009), and is physically located between
573.8 and 577.0 Mb, based on the IWGSC RefSeq v1.0 and
IWGSC RefSeq v2.0 maps, respectively. The maturity QTL de-
tected in the present study was, therefore, about 6.5 Mb away
from the Vrn-B1 gene and far from all QTLs reported for the
three earliness traits in previous studies.

Plant lodging is another important trait in wheat breeding
that directly affects grain yield. The introduction of the Re-
duced height (Rht) dwarfing or semi-dwarfing genes (Peng et al.
1999), such as Rht-B1 and Rht-D1, has made a significant im-
pact in modern wheat cultivars. This study uncovered four
QTLs for lodging tolerance on chromosomes 4B (QLdg.dms-
4B), 5A (QLdg.dms-5A), 5D (QLdg.dms-5D), and 7D (QLdg.dms-7D).
Recently, Semagn et al. (2021a) reported the physical posi-
tions of 20 QTLs for lodging and 14 QTLs for plant height
in four RIL populations, which individually accounted for
1.5%–19.4% and 1.8%–49.1% of the phenotypic variance, re-
spectively. However, none of the QTLs reported in the pre-
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Table 3. Summary of quantitative trait loci (QTLs) associated with five traits in the “HYAYT12-10”/“GP146” DH mapping population based on least-squares means
computed from all environments.

Trait QTL Chr
Position
(cM)

Left position
(cM)

Right position
(cM)

Left position
(Mb)

Right position
(Mb) Left marker Right marker LOD PVE (%)

Additive
effect

Parental
origin

Maturity QMat.dms-4A 4A 524.0 508.5 536.5 29.2 29.8 Kukri_c13639_1326 BS00065607_51 6.2 10.8 0.7 P1

Maturity QMat.dms-5B 5B 2171.0 2143.5 2195.5 581.5 583.5 wsnp_Ex_c621_1230852 Excalibur_c9391_1016 3.1 12.0 − 0.8 P2

Lodging QLdg.dms-4B 4B 1517.0 1508.5 1519.5 505.3 512.8 wsnp_Ex_c4358_7854194 GENE-2331_126 9.7 12.2 − 0.4 P1

Lodging QLdg.dms-5A 5A 538.0 523.5 569.5 111.8 238.5 Excalibur_rep_c69159_392 Tdurum_contig67350_494 3.4 7.7 0.3 P2

Lodging QLdg.dms-5D 5D 568.0 555.5 584.5 401.7 407.6 Tdurum_contig68472_115 Kukri_rep_c79943_189 4.2 9.6 − 0.3 P1

Lodging QLdg.dms-7D 7D 1102.0 1086.5 1130.5 372.1 391.5 Ra_c6845_1501 wsnp_cd454041D_Ta_2_1 3.7 8.7 − 0.3 P1

Yield QYld.dms-2D 2D 1221.0 1218.5 1256.5 422.7 457.6 BS00090129_51 Excalibur_c24307_739 3.9 8.6 0.1 P1

Leaf rust QLr.dms-4A 4A 3127.0 3118.5 3139.5 646.4 648.4 Ra_c63534_581 RAC875_c6939_1042 12.1 9.0 − 1.4 P1

Stem rust QSr.dms-1A 1A 1305.0 1277.5 1307.5 536.8 543.6 Excalibur_rep_c103592_955 RAC875_rep_c69334_132 5.6 6.0 − 0.7 P1

Stem rust QSr.dms-2B 2B 3143.0 3132.5 3155.5 694.9 695.2 BobWhite_c3871_428 BS00065914_51 9.5 22.3 − 1.3 P1

Note: Chr, chromosome; cM, centi-Morgan; Mb, megabase pair; LOD, logarithm of odds; PVE, phenotypic variation explained; P1, “HYAYT12-10”; P2, “GP146”.
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Fig. 3. Genetic linkage maps of nine common wheat (Triticum aestivum L.) chromosomes showing the positions of 10 QTLs based
on 167 DH lines genotyped with 2676 SNPs. Map position (cM) is shown on the left, with each horizontal line on the chromo-
some representing a marker. QTLs are shown on the right side of each chromosome, with bars indicating their confidence
interval between two flanking markers. QTLs associated with agronomic traits and rusts resistance are in black and red fonts,
respectively.

vious study were close to the QTLs identified for lodging
in the present study. For example, QLdg.dms-4B identified in
the present study was located at 505.3–512.8 Mb and had a
moderate effect (accounting for 12.2% of the phenotypic vari-
ance), with the favorable allele originating from “HYAYT12-
10”. Multiple similar QTLs associated either with lodging
or plant height on 4B have been reported (McCartney et
al. 2005b; Verma et al. 2005; Hassan et al. 2019) using ge-
netic positions, but none were close to QLdg.dms-4B. Rht-B1
(TraesCS4B02G043100) is one of the genes located on the short
arm of chromosome 4B that has been widely used in wheat
breeding not only to reduce plant height and increase lodg-
ing tolerance but also to increase yield components and the
number of productive tillers (Kertesz et al. 1991; Lanning et
al. 2012; Sherman et al. 2014; Jobson et al. 2019). The exact
physical position of the Rht-B1 gene differs depending on the
version of the reference sequence and varied from 30.8 Mb
(based on IWGS RefSeq v1.0) to 33.6 Mb (based on IWGS Ref-
Seq v2.1), which are far from the QTL detected in the present
study. QTLs for lodging tolerance have also been reported
on chromosome 5A in different studies (Keller et al. 1999;
Marza et al. 2006), but their positions were reported using
genetic maps in cM, which makes direct comparisons among
independent studies unreliable. Song et al. (2021) reported a
minor QTL for stem diameter on chromosome 5A between
RAC875_c9617_373 and RAC875_c9617_395 that maps at 663.9
Mb, which is far from the QTL identified in the present study.

QYld.dms-2D was the only QTL we found for grain yield that
was located at 422.7–457.6 Mb on chromosome 2D. Grain

yield is a complex trait affected by multiple agronomic and
yield-related traits, environments, and G × E interactions,
and QTL × QTL interactions (epistasis) (Wu et al. 2012; Xing
et al. 2014). Chromosome 2D harbors multiple QTLs associ-
ated with spike number and agronomic traits (Zhang et al.
2015; Perez-Lara et al. 2016; Deng et al. 2019; Ma et al. 2020)
as well as the photoperiodism response Ppd-D1gene. How-
ever, none of the previously reported QTLs are located within
the same physical interval of QYld.dms-2D identified in the
present study.

We uncovered a minor effect QTL associated with leaf
rust at 646.4–648.4 Mb on chromosome 4A (QLr.dms-4A),
another minor effect QTL for stem rust at 536.8–543.6
Mb on 1A (QSr.dms-1A), and a major effect QTL for stem
rust at 694.9–695.2 Mb on 2B (QSr.dms-2B) (Table 3). The
leaf rust QTL on chromosome 4A (QLr.dms-4A) originated
from “HYAYT12-10” and was located between Ra_c63534_581
and RAC875_c6939_1042 at 646.4 and 648.4 Mb, respectively.
Bemister et al. (2019) reported a minor effect leaf rust QTL
on 4A at 602.7 Mb, which is 43.7 Mb far from the posi-
tion of our QTL. Kertho et al. (2015) reported three QTLs
on chromosome 4A for seedling leaf rust resistance at 93.5,
151.3, and 198.8 cM. The closest QTL to QLr.dms-4A identi-
fied in the present study was flanked by marker IWA7859 at
198.84 cM, which is physically located at 115.7 Mb; the two
QTLs are over 530 Mb distant. The other QTL we detected
for stem rust was mapped on chromosome 1A between Excal-
ibur_rep_c103592_955 at 536.8 Mb and RAC875_rep_c69334_132
at 543.6 Mb. Other studies have reported genes (e.g., Sr1RS)
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and QTLs associated with stem rust on 1A (Kumar et al. 2020;
Leonova et al. 2020; Megerssa et al. 2020), but direct compar-
isons across studies were difficult due to the lack of physical
information for most flanking markers.

Chromosome 2B harbors multiple genes, including SrWeb,
Sr28, Sr32, Sr39, Sr36, Sr40, Sr47 (Yu et al. 2014), Sr9h, and Sr16
(McCartney et al. 2005a; Vanegas et al. 2008; Zurn et al. 2018;
Kosgey et al. 2021). It also harbors several QTLs for stem rust
resistance (Prins et al. 2011; Kosgey et al. 2021; Sharma et
al. 2021), but those previously reported genes and QTLs are
not within the physical confidence interval of the QSr.dms-
2B identified in the present study. For example, Kosgey et al.
(2021) found a moderate effect stem rust QTL on 2B between
markers BS00038820_51 and Tdurum_contig54704_176, which
are located at 72.5 and 658.6 Mb, respectively. Sharma et al.
(2021) reported a major effect QTL that accounted for 33.3%
of the phenotypic variation for stem rust on chromosome 2B
between IWB7072 and IWB2380 and another moderate effect
QTL (16.2%) between IWB71742 and IWB73196, which are lo-
cated at 97.1 and 746.7 Mb, respectively.

We found moderate to high broad-sense heritability (0.41–
0.78) and expected to uncover QTLs that account for most of
the phenotypic variance of each trait. However, we were only
able to account for <40% of the phenotypic variance of every
trait. Thus, most of the phenotypic variations remained unex-
plained by the identified QTL, which agrees with several pre-
vious studies conducted in different Canadian spring wheat
populations (Asif et al. 2015; Chen et al. 2015, 2020; Perez-
Lara et al. 2016). Some of the factors that affect the probabil-
ity of detecting QTL and the proportion of variance explained
by each QTL include marker density, mapping population
type and size, trait heritability, the number of environments,
and G × E interactions (Semagn et al. 2010). DH populations
are easy and quick to develop, which makes them attractive
for QTL mapping in various species, but they have poor res-
olution due to limited recombination. They have only gone
through one round of recombination as compared with mul-
tiple rounds of recombination in RIL populations (Yan et al.
2017; Alqudah et al. 2020). Other possible factors include pop-
ulation size, marker density, and trait heritability. Our map-
ping population size of 167 DH lines fell within 100–200 pro-
genies that are widely used in QTL mapping studies (Utz, et al.
2000; Stange et al. 2013), but it had low power for detecting
more numbers of QTL. For example, both leaf rust and stem
rust showed highly significant positive correlations, but we
did not find common QTLs associated with both diseases at
LOD 3.0. At LOD 2.5, however, the 646.4–648.4 Mb on chromo-
some 4A was detected in both leaf and stem rusts. The failure
in detecting the common QTL for stem rust on 4A at LOD 3.0
is likely due to the relatively small population that reduced
its power.

Conclusion
The present study uncovered a total of 10 QTLs linked to

three agronomic traits and two rusts that individually ex-
plained from 6.0% to 22.3% of the phenotypic variance and
together accounted for 8.6%–38.2% of each trait. One of the
QTLs on chromosome 2B (QSr.dms-2B) was a novel major ef-

fect QTL, which explained 22.3% of the phenotypic variance
for stem rust. Follow-up studies are needed to validate and
fine-map the major effect QTL QSr.dms-2B.2 for stem rust. We
found a highly significant positive correlation between stem
and leaf rusts, but we did not detect a coincidental QTL for
these two diseases at LOD 3.0, which is likely due to the rel-
atively small population size that reduces the power of QTL
detection.
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