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Abstract

Suitable rootstock enhances apple tree resilience. In 2021, we studied “Buckeye Gala” apple (Malus domestica var. Buckeye
Gala") on nine rootstocks with contrasting vigor in NS and BC, Canada. Rootstock effects on vigor, yield, and midday stem
water potential were significant in BC. After sustained heat events, the large-dwarfing rootstocks Geneva 935, Geneva 4814,
and Geneva 969 had lower ratio of sunburn fruits, resulting in higher projected damage-free yield. We discussed how higher
stem water potential and larger canopy volume supported by vigorous rootstocks contributed to alleviate heat stress and

improve apple resilience to global warming.
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Introduction

Grafting onto dwarfing rootstocks is a common horticul-
tural practice to control tree vigor, achieve high yield effi-
ciency and enhance crop resilience. Compatible rootstocks
demonstrate desired vigor, yield potential and stress re-
silience under local climatic and edaphic conditions (Marini
and Fazio 2018). Root water transport and xylem hydraulic
traits are among the main determinants of tree vigor and
stress response. The commonly grown small and standard
dwarfing rootstocks, such as Budagovsky 9 and Malling 9,
can effectively limit scion vigor to achieve higher planting
density and yield efficiency. Conversely, the shallower root
system, smaller trunk and lower foliage density could be
drawbacks when tree survival is challenged by environmen-
tal extremes. Larger dwarfing and semi-dwarfing rootstocks
possess some hydraulic advantages, including larger trunk
cross sectional area and more actively transporting xylem,
larger root volumes, and bigger root xylem vessel elements
(Atkinson et al. 1997; Jones 2012; Tworkoski and Fazio 2015;
Xu et al. 2021). These traits ensure higher water transport ca-
pacity to meet scion water demand. Under sufficient irriga-
tion, an increased shading and transpiration cooling effect
in the canopy on larger rootstocks can help to reduce fruit
surface temperature and UV exposure. Presumably, these
traits make vigorous rootstocks more resilient under sus-
tained heat stress, along other rootstock-mediated mecha-
nisms such as leaf osmotic adjustment, hormone regulation

and stable expression of heat shock related genes (Zhou et
al. 2016), and the involvement of antioxidant defense path-
ways (Tao et al. 2020; Balfagon et al. 2021; Gisbert-Mullor et
al. 2021).

In the summer of 2021, sustained heat events affected tree
fruit production in the Pacific Northwest. After five contin-
uous days of daily maximum temperatures above 38 °C, sun-
burn necrosis and browning symptoms (Racsko and Schrader
2012) were manifested on a significant portion of apples in
the south and southwest zones of the canopy in the high-
density planting of “Buckeye Gala” (Malus domestica var. Buck-
eye Gala) in Summerland in the semi-arid Okanagan Valley,
the Interior BC. The planting located in Aylesford in the An-
napolis Valley, NS, being at a similar northern latitude but
under the slightly continental climate, was free from heat
wave and sunburn damage. To investigate whether the sever-
ity of fruit sunburn was impacted by rootstocks, stem water
potential, vigor, and fruit production were examined in nine
rootstocks ranging from small and moderate to large dwarf-
ing, at a “BC” site and an “NS” site. Fruit sunburn damage and
canopy volume were evaluated in BC. Results were used to
explore how tree-water relations across rootstocks were im-
pacted by climate and to examine the relationship between
rootstock vigor and fruit sunburn damage. This study is the
first step towards a comprehensive apple rootstock evalua-
tion as a long-term horticultural practice to mitigate heat
stress and sustain the production of quality apple fruit.
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Materials and methods

Experimental trials, rootstocks, and climatic

conditions

Two “Buckeye Gala” rootstock trials of NC-140 Regional
Rootstock Research Project (North-Central Regional Associa-
tion) were planted in Tall Spindle Axe system, in silt-loam
farm soil in Summerland, BC (49°33'045”N, 119°38'055"W,
elevation 454 m; site “BC”), and in uncultivated sandy loam
soil in Aylesford, NS (45°3'10.264"N, 64°49'44.093"W, eleva-
tion 50 m; site “NS”), in 3’ x 11’ spacing (0.91 m x 3.35m), in
May 2019. The rootstocks were one small-dwarfing Malling
9T337 (M.9T337), four moderate dwarfing—Budagovsky 10
(Bud 10), Geneva 11 (G.11), Geneva 41 (G.41), and New Zealand
#2 (NZ#2), and three large dwarfing—Geneva 4818 (G.4814),
Geneva 935 (G.935), and Geneva 969 (G.969), arranged in a
complete randomized block design (n =5 plots for each root-
stock, 3 trees per plot).

Moisture deficit (MD), daily maximum temperature (Tpax),
and T-sum data (the accumulated mean daily temperatures
above 0°C) were acquired for 1 June 2021-30 September
2021 from Environment Canada weather stations in Sum-
merland and Greenwood (the closest site to Aylesford, NS)
through Farmwest (https://farmwest.com/, accessed on 15
March 2022). Irrigation was supplied through drip line from
May to early October in BC, whereas NS relied on natural pre-
cipitation.

Stem water potential

Midday stem water potential (Wsem) was measured be-
tween 00:30 and 14:00 on two sunny days in mid-late July
2021, using a pressure chamber instrument (PMS 1505 D;
PMS Instrument Company, Albany, OR, USA) (Scholander et
al. 1965). On each sample tree, one sunlit, non-fruiting ex-
tension shoot of 10 cm in length with fully expanded leaves
was enclosed in an equilibration bag for 10 min; the branch
was then cut off and inserted through the pressure chamber
gasket immediately for measurement (n=>5 plots, 1 tree per
plot).

Tree vigor, fruit yield, and sunburn damage

assessment

Trunk diameter (TD) was measured at 30cm above the
grafted union by the end of the growing season, to represent
tree vigor on both sites; for canopy dimension, tree height
and the weight of pruned woods after winter pruning were
measured in BC (n =5 plots, three trees per plot).

Yield was measured at harvest on both sites. In BC, the
ratio of sunburn-damaged apples was recorded as counts of
sunburn-damaged fruits in total fruit counts per tree at har-
vest (n=13 for M9T337, n=14 for G.11 and G.41, and n=15
for other rootstocks). The ratio of sunburn-damaged fruits
per tree was considered as zero in NS.

Damage-free yield per hectare was calculated using the av-
erage observed yield from this study and the estimated op-
timum tree counts per hectare for each vigor class (eq.1)
(Lordan et al. 2018; Robinson 2022), i.e., 3” x 11” spacing
(0.91m x 3.35m) and 3260 trees per hectare for small dwarf-
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ing (1320 trees per acre), 3.6” x 11” spacing (1.10m x 3.35m)
and 2715 trees per hectare for moderate dwarfing (1100 trees
per acre), and 4.2” x 11” spacing (1.28 m x 3.35m) and 2345
trees per hectare for large dwarfing (950 trees per acre), re-
spectively.

(1) Damage-freeyield per hectare = Yield per tree
x (100% — ratio of sunburn fruits per tree)

x Estimated optimum tree counts per hectare

Data analysis

Statistical analysis (analysis of variance (ANOVA), P < 0.05)
and graphing were conducted using OriginPro 8.0 (Origin-
Lab, Northampton, MA, USA). Means pairwise comparison
was conducted under Fisher’s LSD test. For TD and yield data,
one-way ANOVA was conducted for statistical significance for
each site. For stem water potential and estimated damage-
free yield data, two-way ANOVA was conducted with site and
rootstock as the first and second fixed effects, respectively.

Results and discussion

The 2021 growing season was wetter than usual in NS, with
MD at 216 mm from June to September, which was 112 mm
less than the historical average. The T-sum was 2274.35°C,
65°C higher than the 51-year average; the Tn,x was below
32°C at all times (Fig. 1a); and no sunburn damage was ob-
served. In contrast, the BC site experienced a much hotter
and drier growing season than the historical average; MD and
T-sum from June to September were 536 mm and 2576.2 °C,
respectively, being 31 mm and 287 °C higher than the histor-
ical average. MD and T-sum in BC were 320 mm and 302 °C
higher, respectively, than those in NS. Sustained high temper-
ature above 38 °Cin late June led to significant apple sunburn
browning in BC (Fig. 1b).

In general, rootstock effects on TD and yield were greater
in BC than in NS; trees on the more vigorous rootstocks
had larger trunks and higher yield than those on less vigor-
ous rootstocks at both sites. Trunk diameter was unexpect-
edly large for M.26 in NS (Table 1). Except for M.9T337, the
same rootstock had less TD and higher yield in BC than in
NS (statistical significance not listed in the table). This could
be attributed to the weakened initial tree growth due to fu-
migation in 2019 and a higher crop load level in 2021 in
BC (on average, 11.5 fruits per cm? of trunk cross-section
area).

Mid-summer Vg, was not affected by rootstock in NS,
but in BC, G.935 and G.4814 had higher W, than G.11,
Bud 10, and M.9 (Table1). The Wgen in G.969 was lower
than other large-dwarfing rootstocks; its higher tree height
(Fig. 1c) may have potentially imposed more hydraulic chal-
lenge for root-to-shoot water transport. It partitioned more
resources to vertical vegetative extension, resulting in lower
yields than the other large-dwarfing rootstocks (Table 1).
With the exception of G.935 and G.41, the W,y of the
same rootstock was lower in BC than in NS (Table1); av-
erage W ey in BC was —1.23+0.03MPa, being 0.16 MPa
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Fig. 1. Vigorous rootstocksalleviated sunburn damage in "Buckeye Gala" after the heat waves during the 2021 growing sea-
son. (a) Daily maximum temperature in June-September in Summerland, BC, and Greenwood (closest station to Aylesford),
NS. (b) Sunburn-browning apples on the south side of the canopy after the sustained heat event hit the BC site in late June,
2021. (c) Canopy volume represented by the mean weight of pruned wood and tree height by the end of 2021 growing sea-
son at the BC site. Letters near rootstock denote significant differences for the weight of pruned wood. (d) Ratio (mean + SE)
of sunburn-damaged fruits per tree at the BC site at 2021 harvest. (e) Projected damage-free yield per hectare based on the
recommended planting density as 3” x 11” spacing and 3260 trees per hectare for small dwarfing, 2715 trees per hectare for
moderate dwarfing, and 2345 trees per hectare for large dwarfing at the two sites. The ratio of sunburn-damaged fruits per
tree at the NS site was 0. Bars with stripes represent large-dwarfing rootstocks. Within each subpanel, different letters stand
for significant difference at P < 0.05 (subpanels c and d: one-way ANOVA, Fisher’s LSD pairwise comparison, n =13 for M.9T337,
n=14 for G.11 and G.41, and n = 15 for other rootstocks; subpanel e: two-way ANOVA, Fisher’s LSD pairwise comparison, e-BC
site replications as subpanels ¢ and d, and e-NS site n = 5). Boxplots showed median (horizontal line) and interquartile ranges.
Symbols with error bars are the mean =+ standard error.
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Table 1. Stem water potential in mid-late July (W.m), yield per tree at harvest, and trunk diameter by the end of growing
season (TD) of “Buckeye Gala” on nine rootstocks in the 3rd-leaf plantings in Aylesford, NS, and Summerland, BC, in 2021.

NS BC
Vigor class Rootstock TD (mm) Yield (Kg) Wtem (MPa) TD (mm) Yield (Kg) Wtem (MPa)
Small M.9T337 28.68+0.51c 9.40 +0.50ab —1.07+0.04a 22.67 +0.58¢ 7.60 & 0.54f —1.30+0.11abc
dwarfing
Moderate Bud 10 28.92 +0.81c 6.98 +0.93bc —1.17+0.07a 27.63+0.47b 11.24 +0.36cd —1.33+0.10bc
dwarfing G.11 29.16 £ 0.94c 7.24 +0.70bc —1.02+0.03a 27.91+0.78b 10.42 +0.62de —1.37+0.07¢c
G.41 30.79 4 1.12bc 8.4240.94bc —1.0940.07a 27.86+1.14b 9.61 4+ 1.09de —1.1140.08a
M.26 35.13+0.63a 6.74 +1.16bc —1.05+0.07a 27.16 +0.79b 9.36 + 0.74ef —1.24 +0.05abc
NZ#2 30.77 £ 0.79bc 5.90 +1.86¢ —1.08 £0.08a 27.30 +0.54b 12.28 +0.60bc —1.27 £ 0.12abc
Large G.4814 34.1440.75a 11.98+1.01a —1.05+0.04a 30.17+0.52a 14.54 +0.63a —1.1240.10ab
dwarfing G.935 32.92 +0.82ab 9.88+1.58ab —1.01£0.07a 31.75+0.77a 15.13+£0.72a —1.10+0.06a
G.969 33.06 +1.03ab 7.5+1.56bc —1.09+0.05a 30.49 +0.45a 13.42 +0.39ab —1.21+0.10abc
Prob>F 0.7368 0.0274 0.2999 <0.0001 <0.0001 0.0625

Note: Data are raw mean =+ standard error. TD and yield, different letters in the same column stand for statistical significance among the rootstocks at each site at P < 0.05
(one-way ANOVA, Fisher’s LSD pairwise comparison; n=>5); W, different letters in the same column stand for statistical significance among the rootstocks across the

sites at P < 0.05 (two-way ANOVA, Fisher’s LSD pairwise comparison; n =5). The value of Prob > F was listed for the parameter in each column.

lower than the average —1.07+0.02MPa in NS (P<0.001).
This suggests a moderate water deficit in BC despite the
irrigation.

The rootstocks G.935, G.4814, G.969, G.41, and G.11 had
higher pruned wood weights in BC, suggesting higher canopy
volume on these rootstocks (Fig. 1¢). Higher W, and larger
canopy volumes for G.935, G.4814, G.969, and G.41 were as-
sociated with significantly lower ratio of sunburn-damaged
fruits per tree (Fig. 1d). The preventive effect of larger canopy
volume on fruits was similar to shading (Kalcsits et al. 2016).
On one hand, rootstocks with higher stem water potential
(Table 1), i.e., G.935, G.4814, and G.41, could transpire more
water and exert more cooling effect within the canopy. On
the other hand, two of these three rootstocks had larger
canopy volumes (Fig. 1c), which would provide better shad-
ing, leading to lower fruit surface temperatures and reduced
UV-radiation exposure. Consequently, extremely high dam-
age ratio was not observed in any trees on large-dwarfing
rootstocks. In contrast, damage ratios greater than 25% were
observed on some G.11, Bud 10, M.26, and NZ#2 (Fig. 1d). The
Ygem Value in these same trees was lower than —1.4 MPa,
suggesting heat stress susceptibility due to pre-disposition
to water deficit. M.26 trees had the highest ratio of sun-
burn fruits. Higher leaf conductivity and lower liquid wa-
ter content under increased temperature were reported in
M.26, implying its low adaptability to heat stress (Zhou
et al. 2016).

The projected yield of damage-free fruits was subject to
tree yield potential, optimum planting density, and heat
stress resilience of the rootstocks. In BC, G.935 and G.4814
had the highest projected yield of damage-free fruits per
hectare at the vigor-specific optimum planting density, fol-
lowed by G.969 and NZ#2, Bud 10, G.11, and G.41 (Fig. 1e). The
two smallest rootstocks, M.9T337 and M.26, had the lowest
projected yield of damage-free fruits, due to their low yield
per tree and high damage ratio. In NS, G.4814 and M.9T337

had the highest projected yield (Fig. 1e), attributed to high
tree yield potential of the large-dwarfing rootstock (Table 1)
and high planting density of the small-dwarfing rootstock,
respectively.

In summary, the large-dwarfing rootstocks G.935 and
G.4814 performed the best in maintaining good scion wa-
ter status and producing sunburn-free “Buckeye Gala” ap-
ples under sustained summer heat in the third-year plant-
ing. Potential underlying mechanisms of hydraulic regula-
tion and antioxidant defense still need to be elucidated. A
multi-year comparative study between these two sites with
drastically different climatic conditions is required to eval-
uate the potential of these large-dwarfing rootstocks as a
long-term factor to mitigate heat stress, for differences in
fruit quality and sunburn disorder incident may become even
greater as canopy volume increases over time when trees
mature. Rootstock selection based on multi-year and multi-
site data may be key to ensure tree resilience against rising
temperatures in the Okanagan Valley and abiotic stresses in
other northern apple production regions under the climate
change.
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