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Abstract
Information on the spatial distribution of soil pH is essential for assessing soil quality and soil productivity. Digital soil map-

ping (DSM) is commonly used to predict soil characteristics over various types of landscapes. Over the past decade, researchers
have made progress using machine learning techniques to provide reliable predictions of soil properties with limited data.
DSM studies often use a single learning approach, which is constructed with a machine learner that systematically extracts
soil–environment relationships from a large database, whereby a fitted model is used to predict soil information in an un-
mapped area. The practice of using an ensemble learning approach, especially one that combines several base learners, has
rarely been tested in DSM. We developed a workflow for using an ensemble learning algorithm to predict soil properties for
the Thompson-Okanagan region of British Columbia, Canada. Here, we focused on soil pH and tested a variety of base learners.
Base learners with high prediction accuracies were then used to construct a SuperLearner (SL) to extract the complex relation-
ships between soil properties and environmental variables. The fitted SL was then used to predict soil properties at 25 m spatial
resolution at three depth intervals (0–5, 5–15, and 15–30 cm). Prediction accuracies were assessed using an independent test
dataset, which indicated that the SL had a similar prediction accuracy to the best individual base learners. Using the hetero-
geneous ensemble learning approach with a weighted average stacked generalization process eliminated the need to choose
the best base learner.

Key words: ensemble learning, machine learning, SuperLearner, stacked generalization, digital soil mapping, pH, loss-based
estimation

Résumé
On a absolument besoin d’informations sur la répartition du pH du sol dans l’espace pour évaluer la qualité du sol et sa

productivité. Des cartes numériques du sol (CNS) servent couramment à prédire les particularités d’un sol en fonction du relief.
Au cours de la dernière décennie, des chercheurs fait progresser cette technique en recourant à l’apprentissage automatique
pour prédire de façon fiable les propriétés du sol à partir de données restreintes. Les travaux sur les CNS appliquent souvent
une seule méthode d’apprentissage, s’appuyant sur un algorithme unique qui extrait de façon systématique les liens entre le
sol et l’environnement d’une vaste base de données, et en vertu de laquelle le modèle ajusté prédit les particularités du sol dans
les régions non cartographiées. On a rarement testé une méthode réunissant plusieurs algorithmes d’apprentissage pour les
CSN. Les auteurs ont élaboré un flux de tâches reposant sur un algorithme d’apprentissage combinatoire en vue de prédire les
propriétés du sol dans la région de Thompson-Okanagan, en Colombie-Britannique (Canada). À cette fin, ils se sont concentrés
sur le pH du sol et ont testé plusieurs algorithmes de base. Ceux qui enregistraient les prévisions les plus exactes ont ensuite
servi à bâtir un super algorithme dont on s’est servi pour extraire les relations complexes entre les propriétés du sol et les
variables environnementales. Après ajustement, les auteurs ont utilisé leur super algorithme pour prédire les propriétés du
sol à une résolution spatiale de 25 m, à trois intervalles de profondeur (0 à 5 cm, 5 à 15 cm et 15 à 30 cm). Ensuite, ils ont vérifié
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l’exactitude des prévisions grâce à un jeu de données indépendant, ce qui a révélé que le super algorithme était aussi précis
que le meilleur algorithme de base. L’apprentissage combinatoire avec des algorithmes hétérogènes associé à un procédé de
généralisation séquentielle fondé sur le calcul de la moyenne a permis de passer outre la sélection du meilleur algorithme de
base. [Traduit par la Rédaction]

Mots-clés : apprentissage combinatoire, apprentissage automatique, super algorithme d’apprentissage, généralisation séquen-
tielle, cartes du sol numériques, pH, estimation selon les pertes

Introduction
Digital soil mapping (DSM) has increasingly applied novel

machine learning techniques to predict the spatial distri-
bution of soil properties and types (Brungard et al. 2015;
Heung et al. 2016; Khaledian and Miller 2020). Machine
learning algorithms have the potential to quantify the high-
dimensional and nonlinear relationships between the envi-
ronmental predictors and soil response variables over diverse
ecosystem types. With improvements in computer technol-
ogy (Rossiter 2018) and machine learning algorithms over the
past decade, more powerful learners were designed to pro-
cess larger datasets using a larger number of environmental
variables. Examples of such algorithms have included, but are
not limited to, generalized linear regression (GLM; Hastie and
Pregibon 1992), stepwise regression (STEP; Hastie and Pregi-
bon 1992), and lasso and elastic net regularized generalized
linear regression (GLMNET; Friedman et al. 2010), which are
capable of processing nonlinear relationships for both cat-
egorical and continuous data (Simon et al. 2011). Further-
more, the use of tree-based learners, such as the classifica-
tion and regression trees (CART; Breiman et al. 1984), has
led to the development of predictive modelling techniques
that are effective in capturing the hierarchical relationships
between predictors. The CART approaches also form the
basis of more advanced, tree-based learners such as CART
with bagging (Breiman 1996a), the cubist learner (Quinlan
1992, 1993), and the random forest (RF) model (Breiman
2001).

The availability of numerous machine learning algorithms
has encouraged model comparison studies, and these stud-
ies have shown that by using the same input data, different
learners could generate digital soil maps that are drastically
different from one another (Brungard et al. 2015; Heung et
al. 2016). Hence, it has been recommended that model com-
parison should be carried out as part of best practice in DSM
(Heung et al. 2016). In addition to a diverse array of machine
learners, DSM practitioners have also investigated the use of
ensemble models by extending the application of the “bag-
ging” concept proposed in Breiman (1996b). Here, multiple
models are built on bootstrapped samples of the training data
and integrated into a single predictive model to improve the
model predictions in comparison to predictions made using
only one model (Rokach 2010).

Building an ensemble of models using a single type of
learner (i.e., homogeneous ensemble learning) has been of
interest in the DSM literature when predicting the spatial dis-
tribution of soil categorical data and continuous data. Stud-
ies such as Heung et al. (2017) have applied a bootstrapping
routine for k-nearest neighbours, multinomial logistic regres-
sion, and logistic model trees for mapping soil classes, and
Padarian et al. (2017) used a bootstrapping of CART for pre-

dicting a variety of soil properties across six depth intervals.
Furthermore, polygon disaggregation approaches such as DS-
MART, which uses the See5 tree-based algorithm (Odgers et
al. 2014), and its subsequent implementation using the RF
algorithm (Chaney et al. 2016), both operate on a similar
principle.

Although homogeneous ensemble learning methods have
been tested to some extent in DSM (e.g., Heung et al. 2017;
Padarian et al. 2017), there has been considerably less atten-
tion on modelling approaches that combine multiple types of
learners (i.e., heterogeneous ensemble learning). Within the
DSM literature, Malone et al. (2014) tested a variety of model
averaging approaches using equal weight averaging, Bates–
Granger averaging, Bayesian model averaging, and Granger–
Ramanathan averaging, which showed that model averaging
had the potential to improve map accuracy. Subsequently,
O’Rourke et al. (2016) applied a similar model averaging
approach and evaluated the improved accuracy of portable
visible, near-infrared, and X-ray fluorescence spectrometers.
More recently, multiple studies in France have evaluated the
use of model averaging techniques in DSM (Román Dobarco
et al. 2017; Caubet et al. 2019; Chen et al. 2020).

Within the machine learning literature, stacked general-
ization is a type of ensemble learning and model averag-
ing approach. As with other model averaging techniques,
stacked generalization operates on the concept that multi-
ple predictive learners (i.e., “base learners”) are aggregated
into a combined learner, using a combiner algorithm (i.e.,
“meta-learner”), whereby the expectation is that the com-
bined model has a higher predictive performance (Wolpert
1992). Here, the meta-learner evaluates the predictive per-
formance of the individual base learners and builds an op-
timal combination. Stacked generalization was first pro-
posed and tested for categorical data (Wolpert 1992) and
later adapted into regression stacking for continuous data
(Breiman 1996a).

An example of an ensemble learning approach that uses
stacked generalization is the SuperLearner (SL), which was
first proposed by van der Laan et al. (2007) and further eval-
uated by Polley and van der Laan (2010). The SL is unique in
that it uses a variety of different base learners and a cost func-
tion based on cross-validation to create a heterogeneous en-
semble. For example, its first implementation (van der Laan
et al. 2007) combined modelling methods such as regression
trees, RF, least angle regression, logistic regression, and adap-
tive regression splines. The construction of an SL includes
two steps. First, the ensemble learning algorithm uses cross-
validation to evaluate the performance of the base learn-
ers. In the second step, a cost function is applied, based on
the cross-validation results, to calculate a weighted average
prediction from the base learners. Whereas model averag-
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ing incorporates the predictions of all base learners, the SL
also calculates a weighted combination function using least
squares regression but includes the additional constraint that
all model weights are positive——a constraint that is ensured
by removing all learners that have a negative weight (i.e., non-
negative least squares). Subsequently, all model weights are
normalized. Using an SL can mitigate bias, noise, and uncer-
tainties from individual base learners, and may improve the
overall accuracy of the prediction (Polley and van der Laan
2010).

Although the use of SL has rarely been demonstrated in
DSM applications, its use was suggested by Hengl and MacMil-
lan (2019). Applying the stacked generalization approach to
ensemble learning and the mapping of continuous soil at-
tributes is relatively uncommon in DSM, with the recent ex-
ception of Taghizadeh-Mehrjardi et al. (2021), who used a
stacked generalization process to predict soil organic car-
bon. Hence, the objectives of this study were to (1) evalu-
ate and compare a set of base learners, (2) test the potential
of using the ensemble learning approach with stacked gen-
eralization to extract the relationships between soil proper-
ties and environmental variables derived from a digital ele-
vation model (DEM), and (3) compare and assess the use of
the ensemble learner with the individual base learners for
mapping the spatial distribution of soil pH at multiple depth
increments for the Thompson-Okanagan region of British
Columbia, Canada.

Materials and methods
This study modelled soil pH by using multiple base learn-

ers, e.g., GLM, STEP, generalized linear model with lasso
or elastic net regularization (GLMNET_lasso, GLMNET_ridge,
and GLMNET enet), support vector machine–radial (SVMR), k-
nearest neighbours (kNN), RF, and extreme gradient boosting
(XGBoost), and compared them against an ensemble learn-
ing approach with stacked generalization. In all cases, point
data were spatially intersected with raster layers represent-
ing soil–environmental variables to create the training data.
The training data were then used to fit the base learners and a
stacked generalization process was applied using the SL algo-
rithm to create the ensemble prediction of soil pH. As the
goal of this study was to examine the effectiveness of the
ensemble learning process with a continuous soil attribute,
we statistically compared the performance of SL to the base
learners. Figure 1 outlines the general workflow of using an
ensemble learning algorithm with stacked generalization for
DSM purposes.

Study area
This study was carried out in the Thompson-Okanagan re-

gion of British Columbia, Canada (map sheet NTS 092INE;
Fig. 2). This area is located in the southern interior of British
Columbia and includes the Thompson Plateau, the Fraser
Plateau, and the Shuswap Highland physiographic subdivi-
sions (Young et al. 1992). It spans latitudes 50.5◦N to 51.0◦N
and longitudes 120.0◦W to 121.0◦W, and is approximately
4350 km2 in size. The elevation ranges from 318 m to 2088
m above mean sea level, and the area includes the following

biogeoclimatic zones: Bunchgrass Zone, Interior Douglas-fir
Zone, Montane Spruce Zone, Sub-Boreal Spruce Zone, Inte-
rior Cedar–Hemlock Zone, Engelmann Spruce–Subalpine Fir
Zone, and Alpine Tundra Zone (Lloyd et al. 1990). The com-
bination of these biogeoclimatic zones results in a variety of
ecosystems, and the soil maps of the Thompson-Okanagan
region include 99 soil associations for the study area. Each
soil association was linked to one or more soil subgroups
from the Canadian System of Soil Classification, of which
there were 31 in total (Young et al. 1992). Digitized conven-
tional soil polygon maps for the study area were accessed and
downloaded from the BC Soil Information Finder Tool (B.C.
Ministry of Agriculture and B.C. Ministry of Environment
2018).

Due to the climatic conditions and topography, the land-
scape features in the study area represent a combination
of grassland regions, transitional regions, and dry interior
forested regions (Klenner et al. 2008). The majority of the
grasslands occupy catchment areas near Kamloops Lake and
the Thompson River at lower elevations. Grasslands cover
40% of the region and occur between elevations of 230 m
and 800 m. The climate is warm and dry in the grassland re-
gion; the dominant vegetation consists of grasses and sedges,
and the dominant soils are Chernozems. At higher elevations,
away from the water basins, the climate is colder and wetter;
vegetation transitions into forests dominated by ponderosa
pine (Pinus ponderosa), Douglas fir (Pseudotsuga menziesii), lodge-
pole pine (Pinus contorta), white spruce (Picea glauca), and En-
gelmann spruce (Picea engelmannii) at increasingly higher el-
evations (>800 m; Lloyd et al. 1990; Moore et al. 2010). In
the grassland region, the mean annual temperature is 7.9 ◦C
and the mean annual precipitation is 285 mm, whereas in
the forest region the mean annual temperature is 5.0 ◦C and
the mean annual precipitation is 476 mm (Lloyd et al. 1990).
Most of the grasslands are maintained as pasture to support
livestock, and forestry is the other primary industry in the
area.

Soil sampling
A conditioned Latin hypercube sampling approach

(Minasny and McBratney 2006) was used to select 300
sample locations based on topographic variables (Fig. 2). To
ensure accessibility, locations were constrained to lie within
200 m of the road network, which included paved, logging,
and gravel roads. There were 15 of the selected locations
that were not sampled, as 10 locations were inaccessible
due to road conditions and five locations had either ex-
posed bedrock or shallow soils over bedrock, not meeting
the minimum thickness of soil for the first depth interval.
Thus, 285 profiles were sampled, with total depths ranging
from 10 cm to 45 cm. Among the 285 sampled profiles,
278 had soil depth greater than 30 cm, four had soil depth
between 15 cm and 30 cm, and three were shallower than
15 cm.

Fieldwork was carried out in the summer of 2015 using a
field sheet based on the second edition of the "Field Man-
ual for Describing Terrestrial Ecosystems" (B.C. Ministry of
Forests and Range and B.C. Ministry of Environment 2010).
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Fig. 1. The workflow used to predict soil pH (0–5 , 5–15, and 15–30 cm) in the Thompson–Okanagan region. The output map
is in 25 m raster format. [Colour online.]

Fig. 2. Study area in the Thompson-Okanagan region, BC (1:25 000 map grid, composed of map sheets: 92I090, 92I010, 92I150,
and 92I160). The red dots are the sample points. The coordinates refer to UTM zone 10N and the projection is NAD83/BC Albers.
ArcGIS 10.3. software was used to produce the map with a hillshade underlain. [Colour online.]

At each field location, mineral samples were collected from
individual horizons. In total, 845 soil samples were col-
lected from 285 field locations. All mineral soil samples
were air dried and passed through a 2 mm sieve. The fine
fraction of each air-dried soil sample was analysed for pH
(water). Lab analyses were carried out in the B.C. Ministry

of Environment Analytical Chemical Research Laboratory.
The pH was measured with a pH/ion conductivity meter us-
ing a water solution at a ratio of 1:2 (Kalra and Maynard
1991).

Because the soil samples were collected on a horizon ba-
sis, soil pH data were converted into standard depth incre-

Downloaded From: https://complete.bioone.org/journals/Canadian-Journal-of-Soil-Science on 15 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use

http://dx.doi.org/10.1139/CJSS-2021-0091


Canadian Science Publishing

Can. J. Soil Sci. 102: 579–596 (2022) | dx.doi.org/10.1139/CJSS-2021-0091 583

ments (0–5, 5–15, and 15–30 cm), based on the specifications
of GlobalSoilMap.net products (Arrouays et al. 2014), using
the equal-area spline function (Bishop et al. 1999) from the
ithir package in the R statistical language (Malone 2017).
The 0–5, 5–15, and 15–30 cm depth increments had pH val-
ues for 285, 282, and 278 sample locations, respectively. In
addition, descriptive statistics were calculated for the soil
pH values using the JMP 13.0 software. Analysis of vari-
ance was also carried out at the three standard depth incre-
ments to compare the pH values with respect to the sam-
ples acquired from the forest-dominated (F), mixed forest and
grass (FG), and grass-dominated (G) landscapes. Surface veg-
etation type (F, FG, or G) was classified for each sample lo-
cation based on the observation of vegetation cover in the
field.

Environmental predictors
To build the training dataset and predict the soil pH, 17 en-

vironmental variables (Table 1) were derived at a 25 m spatial
resolution from a DEM (B.C. Ministry of Sustainable Resource
Management 2002) and used as predictors. The DEM was pre-
processed using sequential mean filters with window sizes of
3 × 3, 3 × 3, and 5 × 5 cells to reduce noise and anomalies in
the rasters (Heung et al. 2014). Environmental variables were
then calculated to represent local-scale topography (e.g., ele-
vation, slope, aspect, and curvature), landscape-scale topog-
raphy (e.g., multiresolution index of valley bottom flatness),
climatic characteristics (e.g., diurnal anisotropic heating and
diffused insolation), and hydrological characteristics (e.g., to-
pographic wetness index). All variables were calculated us-
ing the System for Automated Geoscientific Analysis (SAGA)
software (SAGA Development Core Team 2011; Conrad et al.
2015) and projected using the Albers equal-area conic projec-
tion system using the NAD83 datum.

Predictive models
The following sections provide a brief description of the

base learners; however, readers are encouraged to refer to the
references provided in Table 2 for detailed descriptions.

The GLM assumes that the regression function is linear in
its inputs, which are comprised of independent environmen-
tal variables, and takes the following form:

yi = β0 + βixi j + εi j, ε
(
0, σ 2)(1)

εi j = yi − β0 −
p∑

j=1

β jxi j(2)

LOLS (β ) =
n∑

i=1

⎛
⎝yi − β0 −

p∑
j=1

β jxi j

⎞
⎠

2

(3)

where y is the dependent response variable (soil attribute), x
is the independent predictor variable, N is the number of pre-
dictor variables, β0 is the intercept, β i is the partial regression

coefficient for each predictor variable, and ε is the error term.
The ordinary least squares (OLS) method determines the coef-
ficients of the independent variables as well as the intercept
value by minimizing the sum of squared residuals (eq. 3). As
a result of its structure, GLM often has an interpretable de-
scription of how the predictor variables influence the target
variable (Hastie et al. 2009). The R package glm was used to
develop the GLM learner (Dobson 2002).

The STEP is a type of multiple regression technique that se-
lects the best-fitted combination of independent variables to
predict the dependent variable. The process includes forward
addition and backward removal of predictors based on the
Akaike information criterion. The R package step with back-
ward removal was used to develop the STEP learner (Venables
and Ripley 2002).

The GLMNET is an extension of the GLM model; however,
it applies a shrinkage and/or regularization approach to min-
imize the number of predictors within the model (Hastie and
Qian 2016; Hastie et al. 2016). The shrinkage method used
by GLMNET is controlled by the alpha hyperparameter: when
alpha = 0, ridge regression (Ridge) is employed; when alpha
= 1, lasso regression (LASSO) is employed; and when 0 < al-
pha < 1, elastic net regression (ENET), a hybrid (i.e., mixing)
of ridge and lasso, is employed. A full description of these
methods is beyond the scope of this study, but readers may
refer to Friedman et al. (2010) for more details. The use of
GLMNET is commonly seen in medical studies and biologi-
cal science, and it has been especially popular in epigenome-
wide association studies (Horvath 2013; Knight et al. 2016),
but it is less common in DSM. The R package glmnet was
used to develop the GLMNET learner (Friedman et al. 2010).
Previously, soil organic carbon (r2 = 0.50) and four other
important soil nutrients were predicted using GLMNET in
India (Sirsat et al. 2018), and Li et al. (2020) used GLMNET
with multiple environmental variables to estimate soil thick-
ness (concordance correlation coefficient (CCC) = 0.76) in
Henan Province, China. Most recently, Taghizadeh-Mehrjardi
et al. (2021) used GLMNET to predict 13 soil properties in
Iran.

The SVMR was proposed by Vapnik et al. (1997) to use a
nonlinear transformation technique to project the original
input into hyperspace and then generate a linear regression
in this newly developed multidimensional feature space. In
this study, a radial basis function kernel was used to create
the regression function. kNN is a supervised learner that uses
a nonparametric method to predict the value in the target
cell based on the values of the k closest neighbouring ob-
servations in feature space (Kuhn 2008). The RF learner uses
an ensemble of individual tree-based models and is derived
from the CART model (Breiman 2001). The individual trees
are trained using a bootstrap sample of the training data
and additional randomness is incorporated into the model
because the variables used to generate the binary splits at
each node of each tree are drawn using a random subset of
the predictor variables (Breiman 2001). XGBoost uses a gradi-
ent boosting framework to build a strong learner from sev-
eral weak learners and uses many decision trees to make the
prediction. The uniqueness of XGBoost is the construction of
new decision trees, which are based on the prediction errors
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Table 1. Covariates derived from a 25 m spatial resolution DEM used for modelling soil pH.

Covariate type Covariate Data format Reference

Local-scale topography Elevation Raster

Slope Raster Zevenbergen and Thorne (1987)

Aspect Raster Zevenbergen and Thorne (1987)

Plan curvature Raster Zevenbergen and Thorne (1987)

Profile curvature Raster Zevenbergen and Thorne (1987)

Convergence index Raster Koethe and Lehmeier (1996)

Landscape-scale topography Multiresolution index of valley
bottom flatness

Raster Gallant and Dowling (2003)

Multiresolution ridge top flatness Raster Gallant and Dowling (2003)

Total catchment area Raster SAGA Development Core Team (2011)

Slope length factor Raster Moore et al. (1993)

Climatic characteristics Diffused insolation Raster Böhner and Antonić (2009); Oke (2002); Wilson
and Gallant (2000); Hofierka and Suri (2002)

Directed insolation Raster Böhner and Antonić (2009); Oke (2002); Wilson
and Gallant (2000); Hofierka and Suri (2002)

Analytical hillshading Raster SAGA Development Core Team (2011)

Diurnal anisotropic heating Raster Böhner and Antonić (2009)

Hydrological characteristics Channel network base level Raster SAGA Development Core Team (2011)

Topographic wetness index Raster Beven and Kirkby (1979)

Altitude above channel network Raster SAGA Development Core Team (2011)

Table 2. Summary of all the learners and corresponding hyperparameters.

Learners Definition Hyperparameters R package Reference

GLM General linear regression None glm Dobson (2002)

STEP Stepwise linear regression None step Venables and Ripley (2002)

Ridge GLMNET——ridge regression lambda caret Kuhn (2008); Hastie and Qian
(2016); Hastie et al. (2016)

LASSO GLMNET——the least absolute
shrinkage and selection
operator

fraction caret Kuhn (2008); Hastie and Qian
(2016); Hastie et al. (2016)

ENET GLMNET——the eleastic net lambda, fraction caret, enet Kuhn (2008); Hastie and Qian
(2016); Hastie et al. (2016)

SVMR Support vector
machine——radial

C, sigma caret Vapnik et al. (1997); Kuhn
(2008)

kNN k-nearest neighbours K caret Kuhn (2008)

RF Random forest mtry, ntree caret Breiman (2001); Kuhn (2008)

XGBoost Extreme gradient boosting e.g., booster, nrounds,
max_depth, gamma, eta

caret Kuhn (2008); Chen et al. (2015)

SuperLearner Model ensemble weights superlearner Polley and van der Laan (2010)

of the previous tree model to minimize the prediction error
of the final prediction. Therefore, the final predictions are an
ensemble of several decision trees (Chen et al. 2015; Chen and
Guestrin 2016).

Stacked generalization using SL

The SL algorithm is an ensemble learner that uses the
stacked generalization concept (Polley and van der Laan
2010). Here, a model intercept is not included, and the
coefficients, which represent the weights of the weighted
combination of the learners, cannot be negative and must
sum to 1. The following equation describes the weighted

combination function:

Yobs = α1
�

Y 1 + · · · + αk
�

Y k(4)

where Yobs represents the observed value,
�

Y k represents the
predicted value from base learner k, and αk represents the
weight of that base learner’s predicted value. When esti-
mating the weights, a non-negative least squares regression
approach is applied with the aim to minimize the mean
square error (MSE). To ensure the non-negative coefficient
constraint, all base learners that have negative coefficients
following the MSE minimization are removed from the SL
model. Then, to ensure that all coefficients sum to 1, the
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remaining coefficients are normalized. The SL and stacked
generalization approach is distinguished from model aver-
aging approaches based on these additional constraints. This
approach differs from Granger–Ramanathan model aver-
aging, which does not include the non-negative coefficient
constraint.

All the base learners were available using the caret package
(Kuhn 2008) and the SuperLearner package (Polley et al. 2019)
in the R statistical software (R Development Core Team 2012).
The caret package was used to facilitate optimization of the
hyperparameters of the base learners, whereas the Super-
Learner package integrated the stacked generalization pro-
cess of the predictions (van der Laan and Dudoit 2003). The
SuperLearner package is particularly useful for the ensemble
learning approach as the package compiles a library of base
learners from the existing R packages, including the caret
package. The SL has been previously evaluated and tested
in biostatistical studies (van der Laan and Dudoit 2003; van
der Laan et al. 2007). Using the outputs predicted by the base
learners and their associated weights, the SL may be used to
generate a map of a target soil variable.

Model training and testing
Every sample location was spatially intersected with the 17

environmental variable layers to create the full observational
dataset. Random holdback cross-validation was used and thus
the full dataset was partitioned into a training dataset (70%)
and a test dataset (30%). The training data were fed into each
base learner to evaluate the relationship between soil pH and
environmental variables; this relationship was then used to
predict soil pH for all locations in the study area. A nested
cross-validation was applied to build and test the SL and base
learners. Within the training dataset (70%), a 10-fold cross-
validation procedure was used to optimize the model hyper-
parameters and to determine the weights of the individual
base learners used to build the SL (Polley et al. 2019). The inde-
pendent test dataset (30%) was used to calculate the accuracy
metrics.

The prediction accuracies of both the base learners and
the SL were quantified using MSE, Lin’s CCC, and bias. Here,
the accuracy metrics were calculated using only the indepen-
dent test data (30%) from the nested cross-validation proce-
dure, which were not used for fitting the SL or optimizing the
model hyperparameters. Mean square error is defined as the
mean of the square of the difference between the observed
values and predicted values, and is a measure of global model
uncertainty (Schluchter 2005); CCC measures the agreement
between the observed values and the predicted values, and is
a measure of model accuracy (Lin 1989); and bias is calculated
as the difference between the mean of the predictions and the
mean of the observed values (Bellon-Maurel et al. 2010).

We repeated the nested cross-validation procedure 30
times to ensure the stability and reliability of the results,
and we reported the mean value and standard deviation for
each accuracy metric (Engebretsen and Bohlin 2019; Fig. 1).
Furthermore, the accuracy metrics from these 30 repeats
were used as the basis for statistical comparisons between
the individual base learners and the SL using a compar-

ison of means with a control using Dunnett’s test with
α = 0.05.

Spatial prediction using SL
After 30 repeats of the nested cross-validation procedure,

the process resulted in 30 fitted SL models with the corre-
sponding 30 sets of fitted base learners. The SL that yielded
the highest CCC value was then used in the spatial predic-
tion, where the weighted combination of selected base learn-
ers was calculated during the training process. The spatial
prediction process with SL had two steps. The first was to
individually produce the spatial predictions of all the fitted
base learners with the 17 topographic raster layers. In the sec-
ond step, the outputs of the base learners were then used as
inputs to the weighted combination to produce the final SL
output. All maps were produced at a 25 m spatial resolution.

Results and discussion

Soil pH
The mean value of soil pH was highest at the 15–30

cm depth increment and lowest at the 0–5 cm increment
(Table 3). Vegetation type, which had been determined by ob-
servation in the field, had a strong influence on pH (Table 4).
At both the 0–5 and 5–15 cm depth increments, pH was signif-
icantly different between each of the vegetation types, with
pH being highest for grass (G), intermediate for forest inter-
mixed with grass (FG), and lowest for forest (F). At the 15–30
cm depth increment, there were no significant differences in
pH among the three vegetation types. These significant ef-
fects in the surface horizons can be partly attributed to the
increase in effective moisture and leaching in the forested
environments, which tend to occur at higher elevations in
the study area (Young et al. 1992; Jobbágy and Jackson 2003).
Deeper in the profile, where parent material is expected to
exert a greater influence on soil properties, the effect of veg-
etation is muted, and fewer significant effects due to vegeta-
tion are expected.

Topography can influence soil pH by controlling water
flow, material redistribution, and microclimate (Moore et al.
1993). In our study, pH values were significantly correlated
with two topographic variables (channel network base level
and elevation) at all three standard depth increments, and
the correlations were all negative (Table 5): pH tended to
be higher at lower channel network base level values and
at lower elevations. These results also reflect the increased
leaching intensity at higher elevations. Similar trends of pH
being related to topographic variables have been observed in
several previous studies (Moore et al. 1993; Smith et al. 2002;
Zhang et al. 2019). Several studies have found an increase in
soil pH at downslope positions (Brubaker et al. 1993; Chen et
al. 1997; Zhang et al. 2019) and Chen et al. (1997) found that
topographic variables, such as aspect and slope, were control-
ling factors of the spatial distribution of soil pH in the moun-
tainous area of east Taiwan.

The effects of vegetation and topography on soil pH are
likely interdependent. Overall, soil pH was higher in the
grass-covered area, which was at lower elevations and was
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Table 3. Summary of descriptive statistics for the soil pH data at three standard depth intervals.

Soil properties
(layers) N Min Max Mean SD Q25 Q50 Q75 CV Skewness

pH (0–5 cm) 285 4.75 8.60 6.73a 0.91 6.13 6.78 7.44 13.60 –0.21

pH (5–15 cm) 278 4.83 8.55 6.78ab 0.93 6.12 6.77 7.55 13.66 –0.09

pH (15–30 cm) 269 4.83 9.63 6.92b 1.01 6.13 6.77 7.77 14.62 0.06

Note: pH, soil pH [log(H+/OH+)]; Min, minimum; Max, maximum; SD, standard deviation; CV, coefficient of variation (%) is defined as the ratio of the SD to the mean;
Q25, Q50, and Q75 refer to the 25% quartile, median, and 75% quartile, respectively. Letters refer to differences in mean pH between different depths based on analysis
of variance, α = 0.5.

Table 4. Analysis of variance and analysis of mean results for the difference in pH among vegetation types.

Mean
pH
value

P value
comparison
with total mean

P value
comparison
with F

P value
comparison
with FG

P value
comparison
with G

pH (0–5 cm)

F 6.4 <0.0001 – <0.0001 <0.0001

FG 7.0 0.0279 <0.0001 – 0.0018

G 7.5 <0.0001 <0.0001 0.0018 –

pH (5–15 cm)

F 6.4 <0.0001 – <0.0001 <0.0001

FG 7.1 0.0093 <0.0001 – 0.0005

G 7.6 <0.0001 <0.0001 0.0005 –

pH (15–30 cm)

F 6.5 0.69 – 0.72 0.73

FG 7.3 087 0.76 – 1

G 8.0 0.87 0.77 1 –

Note: The confidence interval is α = 0.5. F, a forest-dominated landscape; FG, a forest and grass mixed landscape; G, a grass-covered landscape. BEC database and field
observation were used to define the classification of surface vegetation units. The points located in the Bunchgrass Zone (BG) were classified as G. P value, comparison
with the mean value in that depth interval. α = 0.5.

Table 5. Pearson correlation coefficients between pH at three depths and environmental variables.

Environmental variables pH (0–5 cm) pH (5–15 cm) pH (15–30 cm)

Analytical hillshading 0.09 0.09 0.08

Altitude above channel network –0.15∗ –0.14∗ –0.14∗

Aspect 0.02 0.004 –0.02

Total catchment area –0.01 –0.01 –0.02

Channel network base level –0.67∗∗∗ –0.69∗∗∗ –0.69∗∗∗

Convergence index –0.005 0.001 0.02

Diurnal anisotropic heating 0.13∗ 0.12∗ 0.10

Elevation –0.68∗∗∗ –0.71∗∗∗ –0.70∗∗∗

Slope length factor 0.11 0.11 0.10

Multiresolution ridge top flatness 0.02 0.006 –0.009

Multiresolution index of valley bottom flatness 0.001 –0.010 –0.01

Plan curvature 0.01 0.01 0.02

Profile curvature –0.20∗∗ –0.21∗∗ –0.20∗∗

Slope 0.10 0.11 0.10

Topographic wetness index 0.03 0.02 0.01

Directed insolation –0.02 –0.03 –0.04

Diffused insolation –0.67∗∗∗ –0.69∗∗∗ –0.68∗∗∗

∗Correlation is significant at P < 0.05.
∗∗Correlation is significant at P < 0.005
∗∗∗Correlation is significant at P < 0.0001.
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Table 6. Overall error rate of the ensemble learners and base learners using 30 repeats of random holdback cross-validation
for soil pH at three depth intervals.

Depth increment Learners CCC MSE Bias

Mean SD P value Mean SD P value Mean SD P value

pH (0–5 cm) GLM 0.49 0.21 0.16 1.41 1.8 <0.01 − 0.01 0.10 1

STEP 0.53 0.18 0.90 0.91 0.91 0.57 0.00 0.10 1

GLMNET_RIDGE 0.49 0.20 0.27 1.28 1.47 0.02 − 0.01 0.10 1

GLMNET_LASSO 0.49 0.21 0.18 1.35 1.64 0.01 − 0.01 0.10 1

GLMNET_ENET 0.56 0.11 1 0.59 0.35 1 0.00 0.10 1

SVMR 0.58 0.05 0.99 0.47 0.04 1 − 0.02 0.10 1

kNN 0.27 0.07 <0.01 0.76 0.10 0.96 0.01 0.12 0.88

RF 0.60 0.04 0.77 0.47 0.04 1 − 0.02 0.10 1

XGBoost 0.60 0.04 0.92 0.48 0.06 1 − 0.06 0.10 0.65

SL 0.56 0.10 – 0.55 0.21 – − 0.02 0.10 –

pH (5–15 cm) GLM 0.62 0.05 1 0.49 0.04 0.39 − 0.01 0.10 1

STEP 0.63 0.04 0.78 0.47 0.04 1 0.00 0.02 1

GLMNET_RIDGE 0.63 0.05 0.97 0.48 0.05 0.88 − 0.01 0.10 1

GLMNET_LASSO 0.62 0.05 1 0.49 0.05 0.48 − 0.01 0.10 1

GLMNET_ENET 0.62 0.04 0.99 0.46 0.04 0.99 0.00 0.10 1

SVMR 0.61 0.04 1 0.46 0.04 1 − 0.02 0.10 1

kNN 0.34 0.08 <0.01 0.74 0.09 <0.01 0.01 0.12 0.88

RF 0.62 0.03 1 0.48 0.04 0.98 − 0.02 0.10 1

XGBoost 0.61 0.04 1 0.48 0.05 0.72 − 0.06 0.10 0.65

SL 0.61 0.04 – 0.46 0.04 – − 0.02 0.10 –

pH (15–30 cm) GLM 0.57 0.03 0.27 0.89 0.88 0.09 0.03 0.02 0.98

STEP 0.59 0.14 0.88 0.79 0.76 0.43 0.02 0.11 0.99

GLMNET_RIDGE 0.58 0.15 0.60 0.86 0.86 0.17 0.02 0.11 1

GLMNET_LASSO 0.57 0.15 0.31 0.88 0.87 0.10 0.03 0.12 0.99

GLMNET_ENET 0.62 0.07 1 0.55 0.12 1 0.01 0.10 1

SVMR 0.62 0.06 1 0.55 0.08 1 − 0.04 0.09 0.61

kNN 0.29 0.07 <0.01 0.88 0.10 0.10 0.02 0.13 1

RF 0.63 0.05 0.99 0.54 0.07 1 0.02 0.10 1

XGBoost 0.62 0.05 1 0.56 0.08 1 − 0.04 0.10 0.65

SL 0.62 0.07 – 0.56 0.14 – 0.01 0.10 –

Note: Concordance (CCC), mean square error (MSE), and bias (Bias) with their associated standard deviations (SD) were calculated based on the results of 30 iterations.
Mean comparison analysis was carried out between each base learner with SL, α = 0.05.

generally dry and hot, and soil pH was lower in the forested
area, which was at higher elevations with cooler tempera-
tures and humid conditions. Chytrý et al. (2007) observed that
soil pH decreased with increasing precipitation in the moun-
tain area in southern Siberia. The higher amount of precipi-
tation at higher elevations, where the forest is, increases the
rate of leaching in the soil, which increases the concentration
of H+ ions and thus decreases the pH. Lower soil pH was also
reported at higher elevations in an oak woodland–conifer for-
est in the western United States (Dahlgren et al. 1997) and
pine forests in the eastern United States.

Evaluation of base learners
The prediction performance and accuracy assessments for

each base learner and SL are summarized in Table 6. Mean
square error, CCC, and bias were calculated based on the 30
repeats for each depth interval. Random forest and XGBoost
performed consistently well with mean CCC ranging from
0.60 to 0.63 for all three depth increments; furthermore,

the standard deviation values were consistently low as they
ranged from 0.03 to 0.05, which indicates stability in the
models.

At the 0–5 cm depth increment, RF and XGBoost were the
two best performing base learners with CCC = 0.60; however,
SVMR and GLMNET_ENET performed similarly with CCC =
0.58 and 0.56, respectively. Furthermore, the MSE and bias
were also similar, ranging from MSE = 0.47 to 0.59 and bias
= –0.06 to –0.02. With the exception of the kNN base learner,
all other learners performed similarly at the 5–15 cm depth
increment where the CCC ranged from 0.61 to 0.63 and the
MSE and bias shared similar values. At the 15–30 cm depth
increment, a similar pattern was observed in which the kNN
learner performed the worst with CCC = 0.29 in comparison
to the other learners, where the CCC ranged from 0.57 to
0.63.

In Taghizadeh-Mehrjardi et al. (2021), a higher performance
of the RF and XGBoost learners was similarly observed. It
is possible that this may be attributed to the fact that both
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Table 7. Summary of weights for each base learner over 10 nested cross-validations.

Base learners pH (0–5 cm) weight (%) pH (5–15 cm) weight (%) pH (15–30 cm) weight (%)

Mean SD Mean SD Mean SD

GLM 0 0 0 0 0 0

STEP 1 0.04 3 0.08 0 0

GLMNET_RIDGE 0 0 0 0 0 0

GLMNET_LASSO 0 0 0 0 2 0.06

GLMNET_ENET 24 0.32 72 0.17 19 0.29

SVMR 39 0.27 4 0.10 35 0.26

kNN 1 0.02 0 0 1 0.01

RF 28 0.16 7 0.11 21 0.14

XGBoost 7 0.11 14 0.12 22 0.20

Note: SD, standard deviation.

Fig. 3. Predicted soil pH at three depth intervals in the study area with the optimized ensemble learning model (SL). The
coordinates refer to UTM zone 10N and the map projection is NAD83/BC Albers. ArcGIS 10.3. software was used to produce the
map with a hillshade underlain. [Colour online.]

models are ensemble machine learning models themselves——
RF uses a bagging framework while XGBoost uses a boost-
ing framework, and furthermore both models are tree-based
models. Comparing the other learners, GLMNET and STEP

showed a better prediction accuracy than GLM, which in-
dicated that variable selection and the regularization pro-
cess, such as the one used in the GLMNET model, may
have reduced the prediction errors of the linear regression
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Fig. 4. Contour line of pHH2O = 5.99 (equivalent to pHCaCl2
=

5.5) and soil classification of Eutric Brunisol, Dystric Brunisol,
and Podzol in the Thompson–Okanagan region. Based on the
description in CSSS (Soil Classification Working Group 1998),
pHCaCl2

= 5.5 in the B horizon (estimated as 5–15 cm in our
study) is the defining criterion to separate Dystric Brunisol
and Eutric Brunisol. The shapefile of the water bodies in the
region was obtained from the B.C. data catalogue (B.C. Min-
istry of Agriculture and Land 2008). The digitized soil map
was obtained from the British Columbia Soil Information
Finder Tool (B.C. Ministry of Agriculture and B.C. Ministry of
Environment 2018). The coordinates refer to UTM zone 10N
and the map projection is NAD83/BC Albers. ArcGIS 10.3. soft-
ware was used to produce the map with a hillshade underlain.
[Colour online.]

learners. Previous studies showed that when comparing both
linear and nonlinear models, the linear models were the least
effective while the decision tree learners were the most ef-
fective (Khaledian and Miller 2020; Taghizadeh-Mehrjardi et
al. 2021). We observed this to be the case only at the 0–5
cm depth increment and not at the 5–15 cm and 15–30 cm
depth increments, thus suggesting that nonlinear relation-
ships may be present between soil pH and the environment
for surficial soils.

Evaluation of SL
In fitting the SL, the base learners were weighted for each

depth increment and are summarized in Table 7. Here, we
reported the mean model weight from the 30 repeats and
the corresponding standard deviation values for each base
learner. It is important to note that the SL applies a non-
negative least squares framework in estimating the model
weights and hence the models that do not meet the non-
negative condition were assigned a weight of 0. Overall, GLM-
NET_ENET, SVMR, RF, and XGBoost were consistently used in
fitting the SL. Based on the low standard deviation values for
the model weights, the SL appears to be stable when select-
ing the base learners as well as when calculating their corre-
sponding weights.

Fig. 5. Close-ups showing the contrasting relationship be-
tween the pHH2O = 5.99 contour and the boundaries of soil
units in the study area. (A) In the southwest portion of the
study area, the contour line is relatively close to or slightly
above the upper elevation boundary of polygons with Eu-
tric Brunisols present (shown in purple). This approximates
the expected relationship based on the criteria in CSSS (Soil
Classification Working Group 1998). (B) In the north north-
east portion, the pHH2O = 5.99 contour line often occurs at a
higher elevation than expected. In this portion of the study
area, soil units mapped as Dystric Brunisols (shown in orange)
often appear at lower elevations than the contour line. In this
portion of the map, either the pH 5.99 contour is being pre-
dicted at a higher elevation than expected or the soil map-
ping for Dystric Brunisols is inaccurate. The shapefile of the
water bodies in the region was obtained from the B.C. data
catalogue (B.C. Ministry of Agriculture and Land 2008). Digi-
tized soil maps were obtained from the British Columbia Soil
Information Finder Tool (B.C. Ministry of Agriculture and B.C.
Ministry of Environment 2018). The coordinates refer to UTM
zone 10N and the map projection is NAD83/BC Albers. ArcGIS
10.3. software was used to produce the map with a hillshade
underlain. [Colour online.]
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Fig. 6. Close-up showing the difference between the prediction results from different base learners and the results from
the optimized ensemble learning model (SL) at a depth increment of 0–5 cm. (a) GLM, CCC = 0.09; (b) STEP, CCC = 0.71; (c)
GLMNET_RIDGE, CCC = 0.16; (d) GLMNET_LASSO, CCC = 0.11; (e) GLMNET_ENET, CCC = 0.68; (f) SVMR, CCC = 0.66; (g) kNN,
CCC = 0.28; (h) RF, CCC = 0.69; (i) XGBoost, CCC = 0.66; and (j) SL, CCC = 0.70. The shapefile of the water bodies in the region
was obtained from the B.C. data catalogue (B.C. Ministry of Agriculture and Land 2008). Digitized soil maps were obtained from
the British Columbia Soil Information Finder Tool (B.C. Ministry of Agriculture and B.C. Ministry of Environment 2018). The
coordinates refer to UTM zone 10N and the map projection is NAD83/BC Albers. ArcGIS 10.3. software was used to produce the
map with a hillshade underlain. [Colour online.]

It is also interesting to note that of the linear models,
GLMNET_ENET performed the best and was included in the
SL while all other models were assigned weights close to 0.
In comparison, models with drastically different structures,
such as SVMR, RF, and XGBoost, were consistently included
in the SL. This observation shows that the SL selects diverse
models rather than models with similar structures, such as
the linear models. Although kNN is also distinct from the
other models, it was weighted close to 0, which is due to the
fact that it was consistently the poorest performing model
across all depth increments. These findings were consistent
with Polley et al. (2019), who suggested that a diverse set of
base learners, including both linear and nonlinear base learn-
ers, should be used to fit the ensemble learning algorithm in-
stead of using only similar base learners or testing only a few
base learners.

The external test data showed that, based on the mean of
the 30 iterations, the SL had CCC values of 0.56, 0.61, and 0.62

for the 0–5, 5–15, and 15–30 cm depth increments, respec-
tively. Based on the CCC, the SL performed 14.3% better than
the GLM learner at the 0–5 cm depth increment while per-
forming approximately twice as effectively as kNN (Table 6).
With respect to MSE, the SL had a significantly lower MSE
of 0.55 when compared to the GLM model (1.41) at the 0–5
cm depth increment and had significantly lower MSE of 0.46
when compared to the kNN model (0.74) at the 5–15 cm in-
crement. When using bias to assess the difference between
the mean predictions of all the learners and the mean of
the observed values, there were no significant differences. In
general, the SL did not show significant improvements in ac-
curacy, global uncertainty, and bias, which contradicted our
original expectations based on Polley and van der Laan (2010)
and Taghizadeh-Mehrjardi et al. (2021).

In a recent study, Taghizadeh-Mehrjardi et al. (2021) used
14 models to construct an ensemble learner and their overall
finding was that the ensemble learner outperformed all base
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Fig. 7. Close-up showing the difference between the prediction results from different base learners and the results from the
optimized ensemble learning model (SL) at a depth increment of 5–15 cm. (a) GLM, CCC = 0.70; (b) STEP, CCC = 0.71; (c)
GLMNET_RIDGE, CCC = 0.71; (d) GLMNET_LASSO, CCC = 0.70; (e) GLMNET_ENET, CCC = 0.71; (f) SVMR, CCC = 0.69; (g) kNN,
CCC = 0.49; (h) RF, CCC = 0.68; (i) XGBoost, CCC = 0.71; and (j) SL, CCC = 0.71. The shapefile of the water bodies in the region
was obtained from the B.C. data catalogue (B.C. Ministry of Agriculture and Land 2008). The digitized soil maps were obtained
from the British Columbia Soil Information Finder Tool (B.C. Ministry of Agriculture and B.C. Ministry of Environment 2018).
The coordinates refer to UTM zone 10N and the map projection is NAD83/BC Albers. ArcGIS 10.3. software was used to produce
the map with a hillshade underlain. [Colour online.]

learners. Whereas this study showed that except for the kNN
model, the range of accuracy metrics was fairly similar across
all models, the range of accuracy metrics varied far more in
Taghizadeh-Mehrjardi et al. (2021). A possible recommenda-
tion would be that DSM practitioners should first perform
a comprehensive comparison of base learners, and if the re-
sults are inconsistent, the application of SL may be warranted
despite the cost of additional computation and model inter-
pretability.

Visual assessment
We used the SL to predict the spatial distribution of soil pH

at three depth intervals over the Thompson-Okanagan region
(Fig. 3). The greatest spatial variation in pH occurred at the 0–
5 cm depth increment (Fig. 3a), in which it is clear that soil pH
is highest near the Thompson River and Kamloops Lake, and
lowest at the boundary of the mountain regions of the study
area. A similar spatial pattern was also observed at the 5–15
and 15–30 cm depths (Figs. 3b and 3c), in which the soil pH
decreases with increasing elevation, and with distance from

the stream network. This is also revealed by the correlation
coefficient analysis, which showed that soil pH had a strong
negative relationship with elevation (Table 5), and the pre-
dicted map of soil pH shows that soil has lower pH in the
forest at higher elevations (Fig. 3). The low pH in the forest
region could partly be related to the high organic matter con-
tent in the forest floor. A second pattern shows that soil pH is
lower at the 0–5 cm depth and higher at the 15–30 cm depth.
This could be the effect of accumulated base cations from the
parent material.

In Fig. 4, we present a contour line for the pH value mea-
sured in water (pHH2O) of 5.99, which closely approximates a
pH measured in CaCl2 (pHCaCl2

) of 5.5, for the 5–15 cm depth
interval. The contour line is shown in relation to the soil map-
ping boundaries for the study area. In the Canadian System
of Soil Classification, a pHCaCl2

value of 5.5 is a diagnostic cri-
terion for the separation of the Eutric Brunisol great group
(pHCaCl2

> 5.5) from the Dystric Brunisol great group (pHCaCl2

< 5.5). Because of the declining pH values with increasing ele-
vation in the study area, the contour line at pHH2O of 5.99 was
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Fig. 8. Close-up showing the difference between the prediction results from different base learners and the results from the
optimized ensemble learning model (SL) at a depth increment of 15–30 cm. (a) GLM, CCC = 0.64; (b) STEP, CCC = 0.68; (c)
GLMNET_RIDGE, CCC = 0.64; (d) GLMNET_LASSO, CCC = 0.64; (e) GLMNET_ENET, CCC = 0.66; (f) SVMR, CCC = 0.61; (g) kNN,
CCC = 0.30; (h) RF, CCC = 0.67; (i) XGBoost, CCC = 0.66; and (j) SL, CCC = 0.66. The shapefile of the water bodies in the region
was obtained from the B.C. data catalogue (B.C. Ministry of Agriculture and Land 2008). The digitized soil maps were obtained
from the British Columbia Soil Information Finder Tool (B.C. Ministry of Agriculture and B.C. Ministry of Environment 2018).
The coordinates refer to UTM zone 10N and the map projection is NAD83/BC Albers. ArcGIS 10.3. software was used to produce
the map with a hillshade underlain. [Colour online.]

expected to occur near the upper elevation boundary for map
units where Eutric Brunisols occur and near the lower eleva-
tion boundary for map units containing Dystric Brunisols.

There was considerable variability throughout the study
area, and Brunisols did not occur in all map units; in the
southwestern portion of the study area, the location of the
pHH2O = 5.99 contour line generally followed the expected
behaviour by occurring near or slightly above the upper el-
evation where Eutric Brunisols were mapped (Fig. 5). In the
north and northeastern portions of the study area, the pHH2O
= 5.99 contour at times appeared at a higher elevation than
expected. Despite the variability observed in our map re-
sults, information from the Canadian Soil Information Sys-
tem (Agriculture and Agri-Food Ottawa, Ontario 2000) con-
firms that the soil units mapped in the vicinity of our contour
line have pH values in the B horizon that generally agree with
the placement of the contour line. These results were consis-
tent with our pedological understanding of the region and
accuracy and reliability of our pH predictions, but also point
to areas where the pH predictions could be improved.

To further investigate the predicted outputs of the SL in
comparison to its constituent base learners, Figs. 6–8 show a
close-up region of the study area for each base learner with
respect to the SL and for each depth increment. It should
be noted that these figures show the predictions for the sin-
gle repeat of the nested cross-validation that resulted in the
highest CCC, in which the CCC values were 0.70, 0.71, and
0.66 for the 0–5, 5–15, and 15–30 cm depth increments, re-
spectively. The spatial patterns are similar between the base
learners and SL within each depth increment, except for kNN,
where spatial patterning was less obvious, and a relatively
uniform distribution of pH was predicted across the study
area, which may account for the model’s lower accuracy. Sim-
ilar to when the accuracy metrics were investigated, when
the spatial patterns between the base learners were similar,
there appeared to be a limited influence on the spatial pat-
terns when using the SL. This, again, suggests that a soil map-
per should carry out a visual assessment of the base learn-
ers prior to investing additional time and computation into
the SL.
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General discussion
For the surface horizon (0–5 cm), this study showed that

the variation in topography had a direct influence on the
spatial distribution of pH, and the linear regression learn-
ers with variable reduction achieved a prediction accuracy
similar to the regression tree learners. As shown in the re-
sults, more powerful learners such as RF and GLMNET were
more effective than GLM and kNN. On the other hand, this
study only used topographic variables as environmental vari-
ables. Adding additional variables to represent vegetation, cli-
mate, and parent material may have improved the prediction
accuracy.

Other studies have shown that increasing sample size and
using additional environmental variables derived from hy-
perspectral images can improve the accuracy of prediction
(Lagacherie et al. 2019). We recognize the potential limitation
of using only topographic variables as predictors, and we con-
sidered leveraging satellite imagery, such as Landsat and Sen-
tinel 2 images, to represent vegetative patterns in the study
area. However, in the study area, vegetative and climatic pat-
terns are largely controlled by topography; lower elevations
of the region are dominated by grasslands where it is warmer
and drier, and higher elevations are dominated by dry inte-
rior forests where moisture is higher. Furthermore, an im-
portant limitation of satellite data is that disturbance to nat-
ural vegetation patterns, primarily caused by fire and pine
beetles, but also by clear-cutting, is substantial in this area.
Satellite images show present vegetation patterns; consider-
ing that the time frame during which the soils developed,
and as the result of the pH of the original parent material be-
ing altered by pedogenic processes, is over 200 times as long
as the period of significant human activity in the area, we be-
lieve that the topography serves as a more reliable indicator
of the distribution of soil forming processes across the land-
scape.

Previous studies (Seibert et al. 2007; Tu et al. 2018) showed
that the use of topographic indices alone, as in this study,
had the potential to effectively map the spatial distribution
of soil properties, including pH. Tu et al. (2018) suggested that
at a local scale, soil pH in the upper profile has the strongest
correlation with topographic indices compared to the lower
profile. However, in this study, both the individual base learn-
ers and a stacked ensemble learner had higher prediction ac-
curacies in the lower profile. Other researchers have found
that parent material and vegetation-related indices, such as
rooting depth, have a stronger influence on soil pH than to-
pography (Reuter et al. 2008; Gruba and Socha 2016; Zhang
et al. 2019).

Conclusion
This paper presented the use of SL, an ensemble learning

algorithm with stacked generalization, to map the spatial dis-
tribution of soil pH at three depth intervals. The approach
was applied to examine the use of topographic indices to map
the spatial distribution of soil pH in the dry forest ecosys-
tem in the Thompson-Okanagan region of British Columbia,
Canada. The DSMs of soil pH at three depth intervals pro-

vide the first full-coverage map for the area, and the work-
flow may be further applied to map the spatial distribution of
other soil properties. Elevation and surface vegetation types
have a strong influence on the distribution of soil pH, with
pH around 7.5 near the valley basin on the grassland and
around 5.5 near the mountain tops in the forested area. Soil
pH was higher in the 15–30 cm depth increment, compared
to the shallower depth increments, which is likely the re-
sult of leaching, seasonal fluctuations of the water table, and
sodium-rich parent material. Additional spatial information,
such as vegetation, water, or parent material data, should
be considered as additional predictor variables in future
studies.

This study demonstrated how to use an ensemble learn-
ing algorithm with stacked generalization in DSM studies.
When using a machine learning approach in data analysis
and prediction, learner selection is often a challenge, espe-
cially when more than two learners show promising prelimi-
nary results. The ensemble learning approach with stacked
generalization provides the option to combine the results
from multiple learners to create an integrated mapping out-
put with relatively stable performance. The SuperLearner
package provides a solution that allows DSM practitioners to
test many learners at the same time and to help them iden-
tify the most effective learners. Contrary to results from other
studies, the SL does not necessarily outperform all the base
learners, but it does provide near-optimal performance. We
suggest that DSM practitioners should first carry out a com-
prehensive comparison of base learners, and if the model out-
puts yield substantially different results, the SL may provide
the means for improving predictions.
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