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Introduction
In the olden days, people harvested and collected water from 
natural surface water sources (streams, rivers, and lakes), and 
groundwater (springs) (Li, 2016; Worqlul et  al., 2017). The 
quantity was the primary criterion and there was no knowledge 
about the quality of water (Hamed et al., 2018; Ouma et al., 
2020). Gradually, the number of populations increased and the 
level of interest of human beings become advanced (Sarkar & 
Mondal, 2020). To get a reliable source of water, scholars of 
spatial analysis and water resources development have been 
searching for effective tools and approaches (Sun et al., 2019). 
Geographic Information Systems (GIS) has played a signifi-
cant role in prospecting water sources; particularly groundwa-
ter sources (Natarajan & Radhakrishnan, 2020; Rajaveni et al., 
2017). The idea of applying Artificial Intelligence (AI) in dif-
ferent fields of spatial science was emerged to improve the 
accuracy of prediction, and locations in geospatial analysis 
(Rezaeianzadeh et al., 2014). The science of geospatial analysis 
plays an important role in many scientific types of research as it 
primarily focuses on the understanding, analyzing, and visuali-
zation of the real world based on their locations (Mandal et al., 
2018). Geospatial artificial intelligence (GeoAI) is a develop-
ing principle that combines the novelties in artificial intelli-
gence with geospatial analysis (Lohani et  al., 2012). The 
traditional technique of spatial analysis such as Geographic 
Information Systems (GIS) was intensively used in many water 
resources. The accuracy of the predicted spatial results is evalu-
ated by a few points obtained from the ground survey. The 
importance of geospatial artificial intelligence (GeoAI) is to 

improve the quality and accuracy of spatial analysis that couldn’t 
be captured in the traditional GIS technique of geospatial 
analysis (Thiemig et al., 2013). Surface water sources can only 
be utilized if the topography where the community is living 
and the source of water are easily linked, financially affordable 
to treat the water, and the source is available. Groundwater is 
an alternative source of drinking water and requires fewer 
treatment facilities and costs (Pasalari et al., 2019). If there are 
no sufficient skilled human power and financial support to 
conduct direct field-based groundwater investigation, the 
application of effective tools such as GIS is the best solution. 
However, the effectiveness of the traditional GIS technique is 
limited to the small spatial extent due to its dependency on the 
availability of data (Gedam & Dagalo, 2020). The current 
study attempts to expose the capacity of Artificial Intelligence 
(AI) in geospatial analysis to the world’s community with lim-
ited data, but better accuracy in predicting the promising 
groundwater potential zones. To delineate potential groundwa-
ter zones; direct and indirect methods such as areal method, 
surface method, subsurface method, and esoteric method are 
intensively used in different parts of the world (Das & Pardeshi, 
2018). However, the application of Artificial Intelligence (AI) 
in geospatial analysis and GIS in prospecting groundwater 
potential zones is an indirect method, in which field-based data 
such as resistivities and the electrical potential of the soil layers 
are not included. The integration of surface and subsurface 
methods are the best and appropriate methods in which differ-
ent geophysical factors are used to determine the subsurface 
phenomena. The application of GIS and remote sensing for 
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the delineation of groundwater potential zones is mainly 
focused on the remotely sensed data available online (Das, 
2019; Phinzi & Ngetar, 2019). The accuracy of these data is 
relatively low when compared to the ground surveyed data 
(Arefayne Shishaye & Abdi, 2015). The uncertainty in the 
remote sensing data will propagate throughout the data analy-
sis and will disturb the result (Chang et al., 2007). The influ-
ence of the individual criterion was ranked and weighted in 
Artificial Neural Networks (ANN) training model and 
Analytical Hierarchy Process (AHP). The correctness of the 
weights fixed in the ANN and AHP was evaluated with target 
data assigned to the networks and consistency index (CI) 
respectively. The weighted overlay analysis in the GIS environ-
ment was implemented to generate the promising zones in 
both approaches (ANN and GIS).

Method and Materials
Description of the study area

The performance of AI in geospatial analysis and GIS tech-
nique for prospecting of potential groundwater promising 
zones was evaluated in the Fincha catchment, which is found 
in Abay River Basin, Ethiopia. Fincha river is one of the tribu-
taries of the Abay River. For this specific study, based on the 

hydrologic and topographic conditions of this catchment, the 
place where the Fincha river joins Abay river is considered as 
the outlet point of the entire regions in the catchment. After 
fixing the outlet at the junction, all contributing streams (aqua) 
and watersheds (black) were delineated in the GIS platform as 
shown in Figure 1. The catchment is geographically located 
between 37°006′00″E to 37°33′18″E longitude and 09°21′11″N 
to 10°01′00″N latitude. The meteorological (recorded precipi-
tation) stations contributing to the outlet were identified using 
Thiessen Polygon. Accordingly, the contributing stations 
namely: Alibo, Shambu, haro, Neshi, Homi, Hareto, Gabate, 
Kombolcha, and Wayu were identified. Since the intensity of 
rainfall and the infiltration capacity of the soil, geologic, and 
hydrogeologic settings are the main causes for groundwater 
recharge, the exploration of potential zones considers the rain-
fall stations. As estimated in the attribute of the delineated 
catchment, the Fincha river drains a total of 82.11 km2 areas.

GIS-based geospatial analysis for groundwater 
delineation

Since the inventory of Global Positioning System (GPS), 
researchers have been searching for sophisticated software for 
geospatial analysis (El-Magd et al., 2010; Rajaveni et al., 2017; 

Figure 1. Detailed geographic location of the study area.
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Singh & Panda, 2017). Geographical Information Systems 
(GIS) is a computer-based geospatial analysis tool in which an 
algorithm of the earth’s features was built for mapping and 
analyzing different spatial modeling (Phinzi & Ngetar, 2019). 
The reason behind the popularity of GIS and RS technology is 
that due to the difficulties in costs for direct field investigation 
for data collection (Kayet et al., 2018). The field-based investi-
gation of groundwater requires huge money and takes time to 
delineate the potential zones. Therefore, the application of GIS 
and Remote sensing is an effective tool that can save cost and 
time during the development of a water resource. The explora-
tion of groundwater potential zones in GIS and RS relies on 
the surface and subsurface significant factors such as slope, 

geology, rainfall, geomorphological units, lineament density, 
lithology, and soil (Berhanu & Hatiye, 2020). GIS and RS is 
the best tool for the country with limited financial affordability. 
Ethiopia is known for its sufficient water resources, but the 
majority of the community is still demanding for daily con-
sumption (Gedam & Dagalo, 2020). Therefore, the aquifer is 
the primary factor that determines the degree of occurrence of 
groundwater in a given watershed. The potential zones identi-
fying factors such as rainfall, LULC, lineament density, drain-
age density, geology, slope, soil, and geomorphologic units used 
in this study are shown in Figure 2.

The influences of the individual criteria depend on the char-
acteristics of the catchment. As stated in past studies, rainfall, 

Figure 2. Geospatial analysis in GIS and RS for the prospecting of groundwater promising zones.

Downloaded From: https://complete.bioone.org/journals/Air,-Soil-and-Water-Research on 15 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use



4 Air, Soil and Water Research 

drainage density, and lineament density reveal the high signifi-
cance of the occurrence of potential zones when relatively com-
pared with other driving factors. However, the driving factors 
such as LULLC, slope, soil, geology, drainage density, and line-
ament density derived from Remote sensing are the major indi-
cators of groundwater potential zones as explained in (Berhanu 
& Hatiye, 2020). The integration of these significant factors is 
ranked and weighted in AHP and a thematic map is generated 
from these weights based on overlay analysis. The Analytical 
Hierarchy Process (AHP) principle was applied to assign 
weights through the AHP scale and judgment (Arefayne 
Shishaye & Abdi, 2015). Then, setting up priorities between the 
elements to be compared based on the scale, pair-wise compari-
son matrix for scale consists of the relative importance of the 
criterion from 1 (equal importance) to 9 (extreme preference of 
one factor over the other) was applied (Table 1).

The consistency of the weights derived from the pair-wise 
matrix should be checked and this improves the accuracy of the 
decision to be made in AHP method. The consistency of the 
derived values of weights is checked by reducing the error in 
the estimation and this can be achieved by the method called 
Consistency Index (CI) and Consistency Ration (CR) as 
shown in equations (1) and (2).

 Consistency Index CI( ) = −
−

∧max n
n 1

 (1)

 ConsistencyRatio CR( ) = CI
RI

 (2)

Where, λmax is the maximum Eigen value of the pair-wise 
matrix, n is the number of criteria used in the pairwise com-
parison, RI is a random Index for a number of an attributes 
used in the evaluation (Table 2). The CR > 0.1 indicates the 
correctness of weights assigned in AHP.

Data-driven (ANN) model

It is a current issue that Artificial Neural Network (ANN) is 
being used as a powerful tool for water resources management, 
utilization, and modeling (Dtissibe et al., 2020). A neural net-
work is a data-driven model that focuses on an information pro-
cessing algorithm to solve a non-linear problem (Lohani et al., 
2012). The application of ANN in water resources are getting 
attention due to its effectiveness (Aichouri et al., 2015). ANN is 
a data-driven model that is a widely used tool in areas of water 
resources development and management (Chan & Chan, 2020; 
Moreno et al., 2020). The selection of an appropriate tool for the 
delineation of groundwater potential zones depends on the 
availability of inputs and the skill of how to model the watershed 
(Lohani et al., 2012). This study evaluates the performance of a 
data-driven model (ANN) and GIS platforms for the delinea-
tion of groundwater potential zones in Fincha catchment. The 
steps and the input parameters used for the delineation of 
groundwater potential zones in the ANN model and GIS plat-
form are conceptualized as shown in Figure 3.

The input parameters were distributed over a spatial resolu-
tion of 12.5 m × 12.5 m before using in the training processes. 
The productive and non-functional well locations were used as 
target data while training the ANN model. A multi-layer per-
ceptron (MLP) structure was selected in this study. Based on 
the number of input parameters assigned in input nodes, which 
is eight (8), a total of four (4) hidden nodes, and one (1) were 
used in the hidden layer, and output layer respectively. To start 
the training processes, the inputs values were normalized using 
(equation (3)) and random values of weights were assigned. 
The weight values assigned in the input nodes were multiplied 
with the normalized and spatially distributed input parameters. 
The weighted sum of the inputs and weights were activated in 
hidden nodes using (equation (4)).

 Normalization X X
X X

min

max min
=

−
−

 (3)

 Activation function
ex

=
+
1

1
 (4)

Where X is the pixel value in the vector point data, Xmin and 
Xmax the minimum and maximum values in the point-based 
point values.

Training ANN model. Feedforward is the process by which the 
one-sided sum of weights and inputs parameters are pushed 
forward to get a rough result in the output node. The difference 
(error) between the rough result and the target value is very 

Table 1. Analytical Hierarchy Process Scale and Judgment.

ScALE JUDGMENT

1 Equal importance

3 Moderate importance one over the over

5 Essential or strong importance

7 Very strong or demonstrated importance

9 Extreme or absolute importance

2, 4, 6, 8 Intermediate values between the two adjacent 
judgments

Table 2. RI and Attributes.

ATTRIBUTES 3 4 5 6 7 8 9 10

RI 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49
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high at this stage, because, this is the first step of the training 
process. The reason why the error is high at this level is due to 
the randomness of the assigned weights. A backpropagation 
process is a mechanism by which the error between the result 
and target value is minimized. The overall error obtained at the 
output layer starts to propagate back into the networks from 
the output node to the entire network. This process is repeated 
until an acceptable agreement is made between the model 
result and target value. The steps used to delineate the potential 
groundwater zones using the ANN model for this specific 
study is presented in Figure 4.

Groundwater Potential Index (GPI)

The occurrence of the Groundwater potential zone is a func-
tion of the aquifer characteristics and its spatial extent. The 
significance of the individual factor in indicating the ground-
water potential zones is indexed (Arulbalaji et al., 2019). The 
criteria selected for the delineation of potential groundwater 
zones in this catchment were ranked and indexed. The 

integration of all the key factors of the groundwater occurrence 
and movement is computed as GPI (Ahmad, Dar, Teka, et al., 
2020). GPI is a unitless parameter used to index (equation (5)) 
the probability of occurrence of groundwater potential zones in 
a given catchment. This index provides information about the 
quantitative-based groundwater classifications as good, moder-
ate, and poor zones. The GPI was generated by weighted over-
lay analysis using the weight values fixed in ANN and AHP 
approaches.

 GPI Wj Xi
j

m

i

n

= ( )
= =
∑∑

1 1

*  (5)

Wj—normalized weight in j layer, and Xi—rate value of each 
class with respect to j layer.

Validation

The accuracy of the potential zones delineated in both meth-
ods (ANN and GIS technique) was evaluated based on the 

Figure 3. Data-driven (ANN) and GIS for the exploration of groundwater potential zones.

Figure 4. Steps of ANN model for prospecting of groundwater potential zones.
Note. LD = lineament density; R = rainfall; DD = drainage density; GM = geomorphology; LULc = land use/land cover; GE = geology; SO = soil; SL = slope.
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potential wells in the study area. A total number of 51 well 
locations were collected from the local government office and 
out of this, only 36 well have potential yield and the rest are 
dried. The pumping rate of the potential well was collected. 
Since the prediction of the potential zones is the probability, it 
is required to evaluate the accuracy of the identified zones 
based on ground-truthing points. The receiver operating char-
acteristics (ROC) curve was used to evaluate the accuracy of 
the identified groundwater potential zones (Kumar & Krishna, 
2018).

Result and Discussions
The thematic maps generated in the data-driven model and 
GIS technique for the selected groundwater prospecting crite-
ria (rainfall, LULC, drainage density, lineament density, slope, 
geology, soil, and Geomorphology) were presented in Figures 5 
to 12 respectively. As we can see from these maps, the thematic 
layers generated in GIS tools were labeled as (a), whereas the 
results in the data-driven (ANN) model were labeled as (b) in 
each map. The individual criteria were reclassified based on 
their importance in indicating the groundwater potential 
zones. The detailed information about the individual criteria 
was briefed in the next sections.

Rainfall

The main source of groundwater recharge is rainfall. A perme-
able soil that receives rainfall of high intensity can contribute 
to high groundwater recharge (Ahmad, Dar, Andualem, et al., 
2020). The volume of the water stored in an aquifer is a 

function of the rainfall intensity and the duration. Water is 
only stored in the aquifer if the soil and geologic units can 
transmit it. The rechargeability of groundwater depends on 
the void spaces in the soil, geologic structures, and the topo-
graphic conditions of the area. If the rainfall retains for a long 
time and the soil is permeable, there is a high probability to 
recharge groundwater. For potential and permeable aquifers, 
much amount of water is stored when the rain reached the 
water table. As shown in Figure 5, the result of reclassified 
rainfall maps generated in the ANN model and GIS platform 
were shown in Figure 5a and b respectively. The classifications 
of the rainfall of the thematic maps in both approaches 
revealed almost the same categories. This indicates that the 
ANN model can also be used as an alternative in generating a 
thematic map. The rainfall was reclassified as very poor = 1 
(1,548.75–1,617.56 mm), poor = 2 (617.56–1,688.70 mm), 
moderate = 3 (1,688.70–1,762.24 mm), high = 4 (1,762.24–
1,834.04 mm), and very high = 5 (1,834.04–1,914.07 mm).

Though there is no study available before the current study 
regarding the quality and quantity of the groundwater in this 
catchment, it is evidenced from the community that the main 
problem is the quantity.

Land use/land cover

Groundwater recharge is the main process through which 
the rainfall percolates into an aquifer. This process is a 
function of land use and land cover. Urbanization is 
increasing in the catchment and the rechargeability of the 
groundwater is increasing when compared to the past 

Figure 5. Reclassified rainfall thematic maps: (a) GIS tools and (b) ANN model.
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Figure 6. Reclassified land use/land cover thematic maps: (a) GIS tools and (b) ANN model.

Figure 7. Reclassified drainage density: (a) GIS tools and (b) ANN model.

non-urbanized areas (Hamed et al., 2018). The reclassified 
LULC thematic maps generated in the ANN model and 
GIS technique were presented in Figure 6a and b. Five 
dominant land uses/land covers namely: trees cover areas, 
shrub cover areas, grassland, cropland, and swampy areas 
are available in the study area. These were reclassified 
based on qualitative categories as very poor = 1, poor = 2, 

moderate = 3, high = 4, and very high = 5 based on the rate 
of groundwater recharge.

Drainage density

The permeability and the percolation rate of rainfall in specific 
areas are controlled by the drainage density. Stream networks 
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Figure 8. Reclassified lineament density thematic maps: (a) GIS tools and (b) ANN model.

Figure 9. Reclassified slope thematic maps: (a) GIS tools and (b) ANN model.

and the corresponding land surface drained across the length of 
the channel can indicate the potential groundwater zones. The 
aquifer is potential if the drainage density in the catchment is 
contributing to groundwater recharge. The hydrogeologic con-
ditions and moisture-holding capacity of the soil initiates the 
drainage density and this, in turn, support the rechargeability 
of the groundwater. Drainage density is influenced by the 

topographic conditions and the permeability of the geologic 
units. If the slope is flat, the permeability is very high and the 
drainage density is very low. Drainage density derived from 
Digital Elevation Model (DEM) was classified as very poor = 1 
(6.58–11.70 km/km2), poor = 2 (11.70–17.70 km/km2), moder-
ate = 3 (17.70–24.30 km/km2), high = 4 (24.30–32.50 km/km2), 
and very high = 5 (32.50–46.60 km/km2). The reclassified 
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Figure 10. Reclassified geologic thematic maps: (a) GIS tools and (b) ANN model.

Figure 11. Reclassified soil thematic maps: (a) GIS tools and (b) ANN model.

drainage density of the thematic maps generated in the ANN 
model and GIS technique was presented in Figure 7a and b.

Lineament density

The features of the lineament of a watershed provide impor-
tant evidence about the hydrogeology of a given catchment. 
The features of the lineament density derived from LANDSAT 

8 imageries supported by the ground-truthing points can pro-
vide information about the status of groundwater rechargeabil-
ity. Studies conducted in Berhanu and Hatiye (2020), Fenta 
et al. (2015), and Kapilan and Elangovan (2018) confirmed the 
importance of lineament density in providing information 
about the rechargeability of the hydrogeologic settings of a 
catchment. Lineaments are linear lines and zones of localized 
weathering that increase the permeability and porosity in the 
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Figure 12. Reclassified geomorphologic units thematic maps: (a) GIS tools and (b) ANN model.

geologic settings. The lineament density derived from 
LANDSAT 8 imageries was classified as very poor = 1 (0.441–
0.685 km/km2), poor = 2 (0.685–0.938 km/km2), moderate = 3 
(0.938–1.200 km/km2), high = 4 (1.20–1.530 km/km2), very 
high = 5 (1.530–2.390 km/km2). The thematic maps of the lin-
eament density generated both in GIS tools and the ANN 
model were presented in Figure 8a and b respectively.

Slope

The slope is one of the key significant factors and important in 
identifying the groundwater recharge zones in a given catch-
ment. The basic concept behind the importance of slope in 
groundwater recharge is the retention period. The speed, and 
retention time of surface runoff, and the infiltration capacity of 
the geologic units are influenced by the slope. The flat regions 
in the catchment are good indicators of groundwater potential 
zones as the retention time and infiltration rate are high. The 
majority of lower portions of the catchment are categorized 
under steep slopes and the groundwater potential zone ranges 
from very low to low. The speed of the surface runoff is very 
high and the retention period are very low due to the steepness 
of the topography. When the slope is flat enough, the surface 
runoff gets much time to percolate into the subsurface. For this 
study, the slopes were reclassified into five categories to ground-
water potential zones as very high = 5 (6.59%–11.30%), high = 4 
(11.30%–16.6%), moderate = 3 (16.60%–23.20%), poor = 4 
(23.2%–32.1%), and very poor = 5 (32.1%–45.8%) as shown in 
Figure 9a and b.

Geology

The existence of groundwater in an aquifer depends on the 
nature of the geology and permeability of the geologic settings. 
Water is stored in the aquifer when the geologic formation 
holds and conveys the percolating water. The amount and vol-
ume of water stored in the geology is a function of the hydro-
geologic settings of the area. The water can only be stored if 
sufficient void spaces are there between the geologic units. The 
aquifer is assumed to be potential when there are enough spaces 
in the hydrogeologic settings. The geologic units with uniform 
grain size usually have sufficient porosity and high permeabil-
ity. Groundwater recharge occurs from precipitation that per-
colates into the subsurface from the surface runoff, lakes, and 
streams. Fincha river and Fincha lake are permeable and allow 
the seepage of surface water into the subsurface. The dominant 
geologic classes of the study area are grouped into Adigrate 
Sandstone, Blue Nile basalts, Alluvium, colluvium, and marsh 
soils, and the corresponding classes to the groundwater poten-
tial zones are very poor = 1, poor = 2, moderate = 3, high = 4, and 
very high = 5 respectively. The reclassified geologic units in the 
ANN and GIS platform based on their importance for the 
delineation of groundwater potential zones are presented in 
Figure 10a and b.

Soil

The subsurface water is stored in void spaces between the soil 
particles. The volume of water stored in the given hydrologic 
units depends on the texture and size of the soil particles. The 
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existing soil data obtained from the Ministry of Water, Mineral, 
and Energy (MWME) was reclassified as a thematic layer in 
the ANN and GIS platform as shown in Figure 11a and b 
respectively. Reclassification was made based on the permeabil-
ity and infiltration capacity of the soil. However, according to 
the information obtained from productive wells, the depths are 
deep and for such cases, the effect of soil is relatively low. 
Therefore, other factors such as rainfall, LULC, and drainage 
density played a great role in recharging and contributing to 
the sub-surface water. The percolation of rainfall through soil 
is one of the interesting features which in turn helps to reach 
the water. If there is a high probability of percolating through 
the soil, it is obvious that much amount of water is stored in the 
aquifer. For the sub-basin, there is no well-documented infor-
mation about the aquifer, but as it can be evidenced from the 
geophysical investigation conducted, it was found that there is 
high percolation.

Geomorphology

In the study area, seven dominant landforms namely: flat 
plains, irregular plains, escarpments, hills, breaks, low moun-
tains, and high mountains. GIS tools and ANN model were 
used to reclassify the landforms based on their significance of 
contributing to groundwater. A thematic layer was generated in 
both methods and the dominant landforms were reclassified 
into five groups. The landforms of a geomorphologic unit vary 
in terms of their characteristics and spatial distribution. The 
occurrence and movement of the subsurface water depend on 
the geomorphologic characteristics of the area. The low moun-
tainous and flat plains are indicators for the occurrence of 
groundwater if the hydrogeologic settings transmit water. For a 
geomorphological unit, a slope-based landform classification 
was implemented and a quantitative classification namely: very 
poor = 1 (high mountainous), poor = 2 (Hills), Moderate = 3 
(low mountainous), high = 4 (breaks), and very high = 5 (flat 
plains) as shown in Figure 12a and b.

The principle of a pair-wise comparison matrix developed 
in AHP and the overall weights for the evaluated criteria for 
the delineation of groundwater potential zones in the water-
shed was summarized in Table 3. The consistency of the AHP 
technique in capturing the exploration of surface irrigation 
potential zones is evaluated by consistency Index (CI) and 
Consistency Ratio (CR) and the summary of this consistency 
evaluation is as presented in Table 3. As we can see from the 
table, the CI < 0.1, and indicates that the values of weight 
assigned for the individual key factor in AHP are correct. The 
final updated weights were initially assigned between the input 
nodes and the hidden nodes, and between hidden nodes and 
the output node. The result of updated weights after backprop-
agation processes were re-assigned in the ANN model during 
the testing periods. The updated weights in the ANN model 
were taken after the training processes were reached. The 

productive wells, pumping data, and other ground-truthing 
data such as the location of spring and hand-dug well locations 
collected by hand GPS were used as the target data, and the 
delineation of the groundwater potential was repeatedly evalu-
ated until an agreement was made between the target and the 
model result. Since there are eight (8) nodes in the input layer, 
four (4) nodes in the hidden layer, and one (1) node in the 
output layer; a total of 38 synoptic connections (weights) are 
there in the neural networks (NN) selected for this specific 
study. The values of weights taken after the training processes. 
The updated values of weight used in the weighted overlay 
analysis for each criterion were fixed as 0.35, 0.19, 0.27, 0.28, 
0.07, 0.31, and 0.06 for lineament density, LULC, slope, drain-
age density, soil, geology, and geomorphology respectively.

Delineation of groundwater potential zones (GPZ)

The values of weights fixed in ANN and AHP were used to 
index groundwater potential zones. Weights fixed in the train-
ing processes and AHP were assigned to the corresponding key 
factors (lineament density, LULC, slope, drainage density, soil, 
geology, and geomorphology) to generate the groundwater 
potential zones. Weighted overlay analysis tool in the GIS 
platform was used in both methods. The delineated 
Groundwater Potential zones using the GIS platform and 
ANN model were presented in Figures 13 and 14. As we can 
see from Figure 13, delineated potential zones were only clas-
sified into four qualitative-based classifications as High, 
Moderate, Low, and Very low, whereas, in Figure 14, five 
groundwater potential zones were identified including very 
good qualitative classification. The probability of getting 
groundwater potential zones with five classifications was 
obtained in the ANN model, whereas four classifications were 
obtained in the GIS platform.

Validation of the potential zones

The accuracy of the delineated groundwater potential zones 
further evaluated with existing water sources (Berhanu & 
Hatiye, 2020; Das & Pardeshi, 2018; Duan et al., 2016). The 
total number of 51 well locations were collected from the local 
government office and out of this, only 36 well have potential 
yield and the rest are dried. The pumping rate of the potential 
well were collected. Since the prediction of the potential zones 
is probability, it mandatory to evaluate the accuracy of the 
identified zones based on ground-truthing points. As we can 
see from the validated potential zones presented in Figures 13 
and 14, the majority of existing water sources such as shallow 
and hand-dug wells are almost overlapped up to 86% and 
82.5% with the delineated potential zones in ANN model and 
GIS technique respectively. The accuracy of the predicted the 
potential zones evaluated in ROC curve also witness the agree-
ment made between the identified potential zones and the 
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ground-truthing points. The performance of both methods 
was evaluated in ROC separately. As we can see from the 
Figures 15 and 16, the area under curve (AUC) of 0.96 and 
0.91 were estimated for the ROC curve plotted in the ANN 
and GIS results respectively. The AUC computed in both 
methods revealed an agreement of 96% and 91% were made 
between the ground-truthing points and the ANN model and 
between GIS platforms respectively. The ROC curve plotted as 

the false positive (x-axis) and true positive rate (y-axis) was 
shown in Figure 17.

Conclusion
The study presents the performance evaluation made between 
the ANN and GIS platforms for the delineation of groundwa-
ter potential zones in Fincha catchment, Abay Basin, Ethiopia. 
The two methods; data-driven (ANN) model and the GIS 

Table 3. Pair-Wise comparison Matrix of the Key Factors.

LD DD SL LULc R SO GE GM

LD 1.00 3.00 0.25 5.00 2.00 0.33 0.17 3.00

DD 0.33 1.00 0.50 0.33 5.00 4.00 0.13 4.00

SL 4.00 2.00 1.00 2.00 0.25 0.33 0.33 0.20

LULc 0.20 3.00 0.50 1.00 0.33 0.50 2.00 3.00

R 0.50 0.20 4.00 3.00 1.00 3.00 5.00 0.14

SO 0.08 0.19 0.07 0.21 0.38 1.00 0.19 0.03

GE 6.00 8.00 3.00 0.50 0.20 0.33 1.00 0.25

GM 0.33 0.25 5.00 0.33 7.00 0.20 4.00 1.00

col. total 17.37 17.78 14.50 12.29 18.78 15.01 14.63 17.59

Normalized pair-wise comparison matrix

LD 0.06 0.17 0.02 0.41 0.11 0.07 0.01 0.17 0.01

DD 0.02 0.06 0.03 0.03 0.27 0.15 0.01 0.23 0.17

SL 0.23 0.11 0.07 0.16 0.01 0.31 0.02 0.01 0.23

LULc 0.01 0.17 0.03 0.08 0.02 0.47 0.14 0.17 0.47

R 0.03 0.01 0.28 0.24 0.05 0.35 0.34 0.01 0.02

SO 0.08 0.19 0.07 0.21 0.38 0.23 0.04 0.19 0.03

GE 0.35 0.45 0.21 0.04 0.01 0.01 0.07 0.01 0.03

GM 0.02 0.01 0.34 0.03 0.37 0.14 0.27 0.06 0.01

 NORMALIzED SUM OF ROWS NORMALIzED AVERAGE ROWS EIGEN VEcTOR  

LD 0.95 0.95/9 0.12  

DD 0.81 0.81/9 0.10  

SL 0.85 0.85/9 0.11  

LULc 1.09 1.09/9 0.13  

R 0.98 0.98/9 0.12  

SO 1.07 1.07/9 0.18  

GE 1.17 1.17/9 0.14  

GM 1.12 1.12/9 0.14  

Note. LD = lineament density; DD = drainage density; SL = slope; LULc = land use/land cover; R = rainfall; SO = soil; GE = geology; GM = geomorphology; λ = 8.125; n = 8; cI 
(consistency index) = 0.017; RI (random index) = 1.4; cR = 0.01.
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Figure 13. Delineated groundwater potential zones in GIS platforms.

Figure 14. Delineated groundwater potential zones in ANN model.

Downloaded From: https://complete.bioone.org/journals/Air,-Soil-and-Water-Research on 15 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use



14 Air, Soil and Water Research 

Figure 15. ROc curve for validation of groundwater potential zones 

delineated in ANN model.

Figure 17. ROc curve for comparison of results in ANN model and GIS 

platforms.

Figure 16. ROc curve for validation of groundwater potential zones 

delineated in ANN model.

technique were successfully applied to delineate the groundwa-
ter potential zones using the key significant factors such as 
rainfall, slope, LULC, soil, drainage density, lineament density, 
geology, and Geomorphology as groundwater prospecting cri-
teria. The selected criteria were prepared and distributed on the 
12.5 m × 12.5 m spatial resolution, and normalized before 
assigning to the neural networks (NN). The importance of the 
selected criteria was tanked and weighted in ANN and AHP 
approaches that the training processes and prioritization were 
implemented in each method respectively. The accuracy of the 
weights generated in the ANN training model and AHP 
approach was evaluated by the target values assigned to the 
networks and Consistency Index (CI) respectively. The the-
matic map was prepared for the individual criteria and the 
groundwater potential zones were delineated using the weights 
fixed in the ANN training model and AHP respectively. Five 

and four classes of groundwater potential zones as (Very High, 
High, Moderate, Low, and Very low) and (High, Moderate, 
Low, and Very low) were delineated in the ANN and GIS plat-
form respectively. Receiver operating characteristics (ROC) 
curve developed from pumping rate and ground-truthing 
points were used to validate the accuracy of the predicted 
groundwater potential zones. The area under curve (AUC) 
computed from the ROC curve showed that 96% and 91% 
agreement were made in the ANN model and GIS platform 
results respectively. Therefore, the performance of the ANN 
was better than the GIS technique in delineating the potential 
zones. Finally, it is concluded that the ANN model is an effec-
tive tool for the delineation of groundwater prospective zones, 
and this paper will recommend that future research will focus 
on the implementation of the ANN model for the delineation 
of potential groundwater zones for the region where the cost 
for direct field investigation is not affordable. 
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