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Abstract 

Conservation of natural ecosystems requires regular monitoring of biodiversity, including the estimation of wildlife density. Recently, 
unmanned aerial systems (UAS) have become more available for numerous civilian applications. The use of small drones for wildlife surveys 
as a surrogate for manned aerial surveys is becoming increasingly attractive and has already been implemented with some success. This 
raises the question of how to process UAS imagery in order to determine the surface area of sampling strips within an acceptable confidence 
level. For the purpose of wildlife surveys, the estimation of sampling strip surface area needs to be both accurate and quick, and easy to 
implement. As GPS and an inertial measurement units are commonly integrated within unmanned aircraft platforms, two methods of direct 
georeferencing were compared here. On the one hand, we used the image footprint projection (IFP) method, which utilizes collinearity 
equations on each image individually. On the other hand, the Structure from Motion (SfM) technique was used for block orientation and 
georeferencing. These two methods were compared on eight sampling strips. An absolute orientation of the strip was determined by 
indirect georeferencing using ground control points. This absolute orientation was considered as the reference and was used for validating 
the other two methods. The IFP method was demonstrated to be the most accurate and the easiest to implement. It was also found to be 
less demanding in terms of image quality and overlap. However, even though a flat landscape is the type most widely encountered in 
wildlife surveys in Africa, we recommend estimating IFP sensitivity at an accentuation of the relief. 

Key words: Wildlife survey, Unmanned Aerial Systems, aerial inventory, direct georeferencing 

Résumé 
La protection et la gestion raisonnée des écosystèmes naturels passent par la nécessité de quantifier l'importance des populations 
animales. Les inventaires de la grande faune, traditionnellement des inventaires aériens par échantillonnage, pourraient être 
avantageusement remplacés par des inventaires utilisant de petits avions sans pilote (avions ou hélicoptères téléguidés avec appareil photo 
embarqué). Bien que l'utilisation de drones comme outils d'inventaire des grands mammifères ait déjà été mis en œuvre par le passé, 
certaines questions persistent, notamment la manière la plus adéquate de déterminer la surface de la bande inventoriée. La surface 
inventoriée est en effet une information capitale pour le calcul de la densité d'animaux ainsi que de leurs effectif total. La surface de la 
bande photographiée peut se calculer selon différentes approches en fonction des informations et outils utilisés pour le géoréférencement 
du bloc d'images. Deux méthodes utilisant les données de navigation du drone (GPS et attitude) sont comparées dans cet article, l'une 
utilisant les équations de colinéarité afin de projeter individuellement l'emprise (fauchée) de chaque image sur le sol et l'autre utilisant des 
outils de vision par ordinateur et de photogrammétrie afin de déterminer l'orientation du bloc d'images. Les surfaces estimées selon ces 
méthodes furent comparées à une surface de référence, calculée au moyen du géoréférencement du bloc d'image avec des points d'appuis. 
La méthode de projection des fauchées, bien que plus simple à mettre en œuvre, s'avère à la fois la plus rapide et la plus précise en terrain 
à faible dénivelé et répond correctement aux attentes relatives aux inventaires fauniques.  

Mots clés: Enquête sur la faune, les systèmes aériens sans pilote, de l'inventaire aérien, le géoréférencement directe 
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Introduction 
Conservation of natural ecosystems requires regular monitoring of biodiversity. The estimation of wildlife density 
is therefore a starting point for efficient nature management [1]. In the African savannah landscape, which is 
predominantly flat and covered with open vegetation, aerial surveys with light aircraft remain the most commonly 
used technique for counting large mammals [2]. This method involves flying at a constant height and speed in a 
high wing aircraft along parallel transects randomly or systematically distributed across the study area [3]. On each 
side of the aircraft, strip samples (sampling units) are identified by two rigid streamers fixed perpendicularly to wing 
struts and parallel to the aircraft fuselage [3,4]. The streamers are commonly chosen to define a 200 to 250 m width 
strip at a fly height of 300 feet (91 m) above the ground. Only animals seen between the streamers (inside the strip 
sample) are counted by two observers [3]. Digital photographs are taken when large herds (> 15 animals) are 
encountered so that an accurate count may be made of all the animals [4]. The estimation of animal density 
corresponds to the ratio between the number of encountered animals to the total sampling strip surface area 
(width x length). Data processing is performed using the “Jolly 2” method [3]. Possible sources of error are linked 
to the accuracy of the observers and of the strip width, which is sensitive to fly height variation and the bank angle 
of the aircraft [4]. However, these sources of error are not integrated into the sampling error estimation proposed 
in the “Jolly 2” method. 
 
Despite their unquestionable utility, wildlife surveys carried out with manned aircraft present several drawbacks. 
These include safety issues [5,6] and logistical issues, namely the lack of airfields or even appropriate aircraft in 
some areas of Africa [7]. Moreover, these operations are quite expensive for most African wildlife managers, and 
it is therefore difficult to plan long-term and regular surveys. Consequently, in many African protected areas, the 
interval between two successive surveys can often be as great as 10 to 25 years [8]. This makes it impossible to 
quantify accurately the change in wildlife populations [9].Consequently, some of them simply collapse between 
two surveys because no appropriate action have been taken [4,10]. 
 
Until recently, unmanned aerial systems (UAS), or drones, were essentially used in military activities [11-13]. 
However, as UASs have become more accessible, numerous civilian applications have emerged: law enforcement 
[14], rapid response operations [15,16], precision agriculture [17-19], hydrology [20,21], archeology [22] and 
environmental monitoring [23-25]. Within environmental monitoring, in particular, the question of the possible use 
of UASs for wildlife surveys has been raised: is it conceivable that these pre-programmed flying machines will soon 
replace the classic manned aircraft in the counting of wildlife? To date, the use of such a tool in wildlife monitoring 
has been limited to the occasional detection of animal species, such as the bison (Bison bison) [6], the roe deer 
(Cervus elaphus) [26], the alligator (Alligator mississippiensis) [27], marine mammals [12,28], birds [29,30] and the 
orangutan (Pongo spp) [31]. Today, the use of UASs in environmental monitoring has been recognized as an 
opportunity to revolutionize spatial ecology [32] and conservation [31]. The main advantages associated with this 
technology are: a high spatial and temporal resolution in comparison with classical remote sensing platforms 
[13,21,33], low operation costs and complexity [11,34,35], quick deployment [11,33,36], a higher level of safety 
than piloted aircraft [33,37], a reduced ecological footprint [12] and the ability to fly below cloud cover or in cloudy 
conditions [19,33,36]. 
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The use of lightweight unmanned aerial vehicle (UAS) with short flight time instead of light aircraft with onboard 
observers may therefore soon become a viable alternative method for undertaking classic wildlife aerial surveys 
[37]. The surface area of the sampling strips may be estimated by photogrammetric means and images. These 
constitute a form of permanent documentation, and may be analyzed visually afterwards in order to count all the 
animal occurrences. In order to assess the feasibility of using this alternative survey method, we may ask the 
following three sub-questions:  
 
1. Will the off-the-shelf consumer grade camera used in small UASs be able to produce images with a sufficient 
resolution in order to guarantee a detection rate at least comparable to that of an operator observing directly from 
a classical airplane? 
2. Is it possible to process the set of images acquired by UASs in order to estimate the surface area of sampling 
strips with an acceptable confidence level? 
3. Is the traditional sampling plan consisting of systematic or random transects still adaptable to the use of small 
UAS platforms? The sampling plan has to take into account the shorter endurance of small UAS, in comparison to 
traditional manned airplane. The low endurance of small drones is likely to be one of the main limitations. Indeed, 
efficient and accurate aerial surveys require the scan of large surfaces and endurance is directly proportional to the 
scanned surfaces.  
 
Vermeulen et al. [7] provide some answers to the first sub-question. It appears that the accuracy of the level of 
detection is acceptable only for large mammals such as the elephant (Loxodonta africana), but not for smaller 
species at a flight altitude of 100 meters above ground level. However, other studies [6,12,26–29] have highlighted 
the fact that UASs have facilitated the detection of species smaller than the elephant, i.e. conspicuous and 
gregarious animals in open areas (e.g. bison, alligator, birds and marine mammals).The present paper focuses on 
the second sub-question and deals more specifically with the issue of the estimation of sampling strip surface area, 
which is strongly related to the georeferencing process. This information is an essential component of animal 
density estimation, and its associated level of error can strongly interfere with the accuracy of this calculation.  In 
UAS photogrammetry, georeferencing may be implemented in different ways. The aim of this paper is to compare 
the different solutions available and to determine the most efficient of these for the estimation of sampling strip 
surface area in wildlife surveys. The sampling strip surface is the total surface scanned by the camera along the 
sampling strip and measured in a specific projection system. To this end, emerging photogrammetric methods, 
known as Structure from Motion (SfM) [38], are compared with the use of collinearity equations for georeferencing 
individual camera frames based on integrated GPS positions. 

 
Methods 
Description of the small UAS used in the present study 
The Gatewing X100 (www.gatewing.com) is a fixed wing small UAS with a 1 m wingspan. The plane weighs 2 kg and 
is equipped with an electric brushless 250 W pusher propeller. Its endurance is 40 minutes flying at 80 km/h. Take-
off is achieved by a catapult launcher. Landing requires an obstacle-free landing strip of 150 m long by 30 m width. 
This UAS is equipped with an autopilot, enabling fully autonomous navigation from take-off to landing, following a 
pre-defined flight plan. The flight altitude can be selected from between 100 m and 750 m Above Ground Level 
(AGL) at the take-off location. The autopilot consists of an artificial heading and attitude reference system (AHRS), 
which integrates GPS and an inertial measurement unit (IMU). 
 
The Ground Control Station (GCS) consists of a rugged tablet computer (Yuma TrimbleTM) and a modem enabling 
communication with the drone. The GCS is equipped with two distinct pieces of software, the first designed for 
flight planning (Gatewing Quickfield) and the second for the autopilot system (Horizon ground control software, 
developed by MicroPilot). The flight plan is prepared by defining a rectangular scanning zone on a Google EarthTM 
map and setting general flight parameters such as the location and direction of take-off and landing, flight altitude 
and image overlap (side and forward overlap are equal). 
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Starting from the overlap, the altitude, the sensor size and the focal length, the flight planning software computes 
the base-line (distance between two consecutive image centers). The base-line defines the distance between two 
flight strips as well as the frequency of camera triggering, taking into account the theoretical ground speed (80 
Km/h). On this basis, the scanning zone is divided into different flight strips delineated by waypoints that are used 
by the autopilot for navigation. The UAS autopilot system is linked to the camera and sends the necessary trigger 
signal. If a strong wind occurs, this may affect the speed of the UAS and result in deviations of the image overlap. 
 
The airborne sensor is a consumer grade camera (Ricoh GR Digital III), with a 10-megapixel charged couple device 
and a fixed focal length of 6 mm (28 mm in 35 mm equivalent focal length). The spatial resolution (Ground Sample 
Distance) is directly related to the flight altitude, the focal length and the pixel size of the sensor [39] and reaches 
a resolution of 3.3 cm/pixels at an altitude of 100 meters above ground level with this camera (Equation 1). 

 𝐺𝑆𝐷 =
𝑃𝑖𝑥𝑆𝑖𝑧𝑒 .𝐻𝑓

𝑓
 Eq. 1 

Where    GSD is the Ground Sample Distance (resolution) [cm/pixel], 
 𝑃𝑖𝑥𝑆𝑖𝑧𝑒  is pixel size [um/pixel], 
 𝐻𝑓 is the flight altitude Above Ground Level (AGL) [m], 

 𝑓 is the focal length [mm]. 

 

Data acquisition 
The study was carried out in southern Burkina Faso in the Nazinga Game Ranch (NGR), which covers about 940 km² 
along the border with Ghana. Vegetation cover is composed of a mosaic of clear shrubs, woody savannah and tree 
savannah. Apart from the micro-relief of the tree canopy, the terrain relief shows a negligible variation in altitude. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Distribution of the 48 
targets along the test zone. 
Targets are separated by 100 
m longitudinally and by 50 m 
laterally. 
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The test strip used in this study is a transect of 1.5 km long oriented SW-NE. The width of the strip 
relies on the flight altitude (Equation 1). Three different flight heights were tested: 100 m, 150 m and 
200 m, corresponding to an image swath of respectively 123 m, 184 m and 246 m. Low altitude flights 
are more appropriate because they enable easier animal detectability [7]. In order to easily define 
Ground Control Points (GCPs) with accurate global coordinates, a set of 48 targets was arranged at 
regular intervals on a grid measuring 100 meters along by 50 meters apart from the transect (Figure 
1). The coordinates of each target were measured with a sub-metric SxBLUE II GPS 
(http://www.sxbluegps.com). Theoretical image overlap was set to 90%, but due to wind, effective 
overlap was highly variable (ranges from 60% to 90% in average per sampling strip). A total of five 
flights were carried out over two half-days (15/02/2012 PM and 16/02/2012 AM): 3 flights at 100 m 
AGL, one at 150 m AGL and one at 200 m AGL. 16th February was the windier of the two days, with a 
wind speed of 3 Beaufort (12-19 km/h). For each flight, the drone twice went over the strip transect 
(return), providing 2 strips per flight. A quick visual evaluation of the 10 sets of images led us to discard 
two of them, because the image overlap was insufficient to carry out an aerotriangulation process. The 
8 sets of images that were ultimately analyzed are described in Table 1.  

 
Processing of images and estimation of surface area  
Images acquired with an aerial platform need to be georeferenced in order to use them for 
quantitative purposes such as the calculation of surface area or density [33,40]. Among the different 
ways to implement georeferencing, a distinction needs to be made between direct and indirect 
georeferencing. Indirect georeferencing requires the definition of GCPs corresponding to identifiable 
features in the imagery for which the coordinates are known. This task is time consuming [41], and 
even sometimes infeasible due to a lack of clearly identifiable GCPs on large scale images [33]. Direct 
georeferencing takes advantage of both the position (X0, Y0, Z0) and the orientation (omega, phi, kappa) 
of the camera, provided by integrated GPS/IMU [19,42]. Nevertheless, the implementation of direct 
georeferencing in the case of a UAS is somewhat challenging, due to the limited accuracy of the GPS 
and inertial measurement units involved [13,40]. The georeferencing method should be considered on 
the basis of the requirements of the mapping project [40]. For wildlife surveys, the requirements in 
terms of georeferencing accuracy are low, as the density is calculated on the basis of the total surface 
area of the sampling strips. UAS images may be georeferenced either by assigning individually low 
accurate Exterior Orientation (acronym: EO, which is position & orientation) from the GPS/IMU system 
or by using a Structure from Motion technique [38] for refining the EO of the block of imagery [13,42]. 
Taking into account the fact that (i) the desired information (total surface area of the strip) does not 
necessary require a high level of geometric accuracy at the single image level and that (ii) strips can be 
made up of a very high number of pictures, three methods presenting a graduated level of complexity 
and potential accuracy were compared. 

1. Image footprint projection - IFP 

In the IFP method, the position and altitude of the camera, logged during the flight, are used to 
compute a simple projection of the images on a horizontal plane corresponding to the ground level 
(Figure 2).  This method uses collinearity equations, which describe the relationship between a three-
dimensional object and its projection onto a two-dimensional image [39], in order to transform the 
frame of an image from its internal coordinate system to a polygon drawn within  a geographical 
coordinate system [19,43]. Each of the 4 corners of each camera frame is projected by means of 
Equation 2 and these sets of corners are subsequently linked together. A real example of the IFP 
method is provided in appendix 1. All the polygons corresponding to individual images are then merged 
and the strip surface area equals that of the resulting polygon. In this study, the earth-based coordinate 
system utilized was the projection system Universal Transverse Mercator 30N. 
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𝑋 = −𝐻𝑓  
𝑚11𝑥+𝑚21𝑦−𝑚31𝑓 

𝑚13𝑥+𝑚23𝑦−𝑚33𝑓
+  𝑋0 Eq. 2 

𝑌 = −𝐻𝑓  
𝑚12𝑥+𝑚22𝑦−𝑚32𝑓 

𝑚13𝑥+𝑚23𝑦−𝑚33𝑓
+  𝑌0   

 
 Where X,Y are the earth-based coordinates [m], 
  x, y are the camera frame coordinates [mm], 
  f  is the camera focal length, 
 𝐻𝑓  is the flight altitude Above Ground Level (AGL) [m], 

 𝑋0 and 𝑌0 are the position of the camera (optical center) [m], 
 𝑚𝑖𝑖  are the 9 coefficients of the rotation matrix, computed from the orientation of the 

 drone (roll, pitch, yaw) 

 

 

 

 

 

 

 

Figure 2 Illustration of Image Footprint 
Projection (IFP). This georeferencing 
method uses direct georeferencing. 
Figure adapted from Sugiura et al. [19]. 

 

 

2. Bundle block adjustment without GCP (direct georeferencing) - BBA DG 

Recent developments in automatic image matching have led to the release of low-cost and versatile 
software, taking advantage of both photogrammetric and computer vision (Structure from Motion; 
SfM) techniques. Although a review of SfM is not appropriate for this paper, we will give an overall 
insight into its tenets and describe briefly the reasons why this approach is particularly suited to UAS 
imagery. Images acquired by UAS are fundamentally different from those collected by traditional aerial 
platforms [13]. These images are characterized by a low-oblique vantage points, and a high angular 
variation between successive images [36]. Furthermore, the low altitude of the platform causes 
important perspective distortions [13]. These UAS images are also often marred by a high variation in 
illumination and by occlusions [42]. Another difference lies in the sensor: UAS platforms make use of 
consumer grade cameras, which were not initially designed for metric purposes, and which have a high 
(and unknown) level of distortion and low geometric stability [44]. On the other hand, traditional aerial 
platforms use metric cameras, which are stable, and have a larger charged couple device and a known 
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level of distortion [45]. Moreover, the number of images is appreciably greater when using UAS as a 
mapping tool, contrary to traditional aerial platforms. SfM was designed to restitute the 3D relief of 
an object from a randomly acquired image  dataset. The process of dense-matching may be interpreted 
as a three step workflow: first of all, automatic generation of image tie points is performed, based on 
image feature descriptors and matching algorithms, such as the scale invariant feature transform [46]. 
Secondly, the aerotriangulation model is computed by means of a bundle block adjustment (BBA). The 
aerotriangulation model is the 3D position of each tie point as well as the external orientation and the 
inner parameters of the camera for each image from the block. We refer the reader to Triggs et al. [47] 
for an explanation of BBA. The sparse 3D model may then be georeferenced. Thirdly, a dense-matching 
algorithm determines the geometry and the position of the object. The dense 3D model is used for 
orthorectifying individual images in order to remove distortions regarding perspective and relief. 
 
The SfM photogrammetric software used in this study was the Agisoft PhotoscanTM LLC 0.90. With this 
software, images are oriented with a self-calibrating-BBA algorithm and relief is computed by multi-
view dense-matching. The tool "Optimization" of this software has been used to avoid non-linear 
distortions [48]. In the present study, the photoscan parameters were set to medium quality for image 
alignment and geometry building. 
 
In the BBA DG approach, model georeferencing is performed using the external orientation from the 
navigation files. Approximate values of camera pose are extracted from the navigation files and serve 
for the georeferencing of the image block. Images are orthorectified and assembled in an 
orthophotomosaic whose contour is then converted into a polygon. The surface area of the strip is 
then calculated as the surface area of this resulting polygon. 

3. Absolute orientation of images using GCPs (indirect georeferencing) - BBA IG 

This method uses the same workflow as the BBA DG approach, except for the georeferencing. With 
BBA IG, GCPs are used instead of the EO to transform the relative orientation in an absolute reference 
frame. The use of GCPs improves the georeferencing of the resulting orthophotomosaic in comparison 
to the use of exterior orientation, as the level of accuracy of GCPs position outperforms the accuracy 
of EO position. The effort needed to set and georeference the targets along the strips makes it unlikely 
that this method will be reproduced for wider studies. This method is used to produce a surface area 
estimation, which can be considered as the reference, due to the numerous GCPs and their high 
position accuracy. Processing were performed using Photoscan. 

Comparison of surface area estimation techniques 

The BBA IG method was considered as the reference, and was used to compute the relative error (bias) 
for each surface area estimation made using the first two methods. These performance metrics were 
then compared using a two-way ANCOVA (i. e. a general linear model with one quantitative factor and 
one qualitative factor), the method of surface area estimation being considered as a factor, and the 
elevation as a co-variate. 
 
Processing was timed for each method in order to provide a comparison. This test was performed by 
an experienced user on strip n°1 (see Table 1) on a laptop (16 GB ram, i7 core 2.00 GHz). Computation-
time is strongly dependent on computer performance and on the resolution used for dense-matching.  

 
Results 
Results of strip surface area computation are presented in Table 1 and an illustration of the workflow 
for acquiring and processing UAS images is shown on Figure 3. The relative bias of the IFP and BBA DG 
methods was computed as the difference compared to the reference surface area (BBA IG). The 
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maximal difference was +4.7% for IFP and -7.2% for BBA DG. Two-way ANCOVA analysis showed that 
the type of method had a significant influence on the relative error (p-value = 0.0064). BBA DG resulted 
in a underestimation of -2.3%, whereas the IFP method caused an overestimation of 1.4%. One sample 
t-test demonstrated that IFP was not significantly different from BBA IG (p-value = 0.142). However, 
BBA DG showed a significant bias (p-value = 0.039). Nevertheless, the mean relative error of both 
methods can be regarded as relatively low considering the range of variability commonly encountered 
in wildlife surveys. Neither the flight height nor the interaction between flight height and the 
calculating method showed a significant impact on the accuracy of the surface area estimation (p-value 
of 0.08 and 0.8 respectively). It is interesting to note that in this case study, despite the fact that BBA 
DG takes into account the relief of the scene, this method demonstrated a lower level of accuracy in 
comparison with the IFP method. One might expect that in the case of a more pronounced relief, BBA 
DG will show a clear superiority over the IFP method.  
 

 
The IFP method takes 9 minutes to process, BBA DG 23 minutes and BBA IG 45 minutes for one single 
strip. BBA DG requires much more time than IFP due to the computation time needed for image 
matching. On the other hand, BBA IG is very time-consuming because the user has to manually mark 
each GCP on the different images. This trend in implementation time highlights the gradient of 
complexity of the three methods. Whereas the IFP method can be easily implemented in any GIS 
software and is not demanding in terms of image quality, BBA (DG and IG) relies on the SfM software 
solution, which requires computer power. Moreover, IFP accommodates aerial images with a low level 
of overlap or even without any overlap. BBA is applicable only if the image overlap enables an 
automatic image matching. This is difficult if the images are blurred, where objects such as animals or 
shadows have moved between two images. 

 

Fig. 3 Creation of the orthophotomosaic for the determination of the surface area of sampling strip. A) The lightweight 
UAS Gatewing X100 on the catapult launcher, ready for departure. B) One of the raw aerial image (flight altitude: 200 
meters above ground level). C) Orthophotomosaic of the test field generated tanks to Structure from Motion 
techniques. 
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Table 1 Characteristics of the 8 aerial strips and the strip surface area estimated using the three 
methods. BBA IG (Bundle Block Adjustment with Indirect Georeferencing) is the reference. IFP 
(Individual Footprint Projection) generally gives a lower bias than BBA DG (Bundle Block Adjustment 
with Direct Georeferencing). 

 

Strip 
ID 

Flight 
ID 

Number 
of 

Images 

Flight 
altitude 

[m] 

Overlap 
[%] 

Surface area estimation (ha) Relative error 
(%) 

BBA IG IFP BBA DG IFP BBA DG 

1 1 51 100 69 22.3 21.9 20.7 -1.9 -7.2 
2 1 65 100 76 21.8 22.3 21.6 2.4 -0.6 

3 2 108 100 84 23.7 23.5 23.6 -1.2 -0.4 

4 3 99 100 83 23.1 22.9 22.9 -0.7 -0.7 

5 4 54 150 79 35.4 36.3 33.9 2.5 -4.3 

6 4 69 150 84 34.7 35.7 33.5 2.8 -3.6 

7 5 46 200 79 53.8 56.3 52.9 4.7 -1.6 

8 5 92 200 89 54.4 55.7 54.5 2.4 0.2 

Mean error:   +1.4    -2.3 
 Residual mean square error: 2.57 3.29 

P-Value: 0.142 0.039 
 

Discussion 
For the purpose of wildlife surveys with UAS, the surface area computation needs to be sufficiently 
accurate but it also needs to be quick and easily manageable. Individual Footprint Projection (IFP) 
appears to outperform the method of BBA with Direct Georeferencing, due to its higher accuracy 
(RMSE of 2.57% for IFP and 3.29% for BBA DG), its quicker processing time and its relatively low 
complexity, enabling its implementation in most types of commonly existing GIS software. This direct 
georeferencing technique also presents the advantage of being insensitive to variations in overlap 
between pictures within a flight line. However it still remains important to maintain this overlap as it 
is a primary  factor during the counting phase [7]. Of course, aligning the images together has many 
advantages and shows great potential for high temporal and spatial resolution mapping, but the use 
of this approach for surface area computation appears to be excessively demanding in terms of human 
and computer work.  
 
An in-house software program has been developed in order to implement the collinearity equation so 
as to project image footprints based on X100 telemetry information and on the camera specification 
(focal length and sensor size). One of the major drawbacks of the IFP method is that it does not account 
for the topography of the area under study. The good performance of the IFP method in this study 
relates to the very flat relief of the study area. Indeed, IFP is based on the assumptions that the terrain 
is flat, the flight height is constant and the telemetry data (GPS position and gyro angles) are correct. 
Although this type of unrelieved landscape is very representative of the areas usually inventoried in 
western Africa, we recommend estimating the sensitivity of the IFP method at an accentuation of the 
relief. Under these conditions, the use of a global digital ground model such as shuttle radar 
topography mission (SRTM) would probably limit the number of errors linked to the variations in height 
within strip samples. 
 
The use of small UASs in big mammal surveys opens up interesting perspectives. Up to now, no other 
investigations had shown an interest in the sampling strip area estimation. Most of the studies have 
demonstrated the detection possibilities of various animals, ranging from flocks of waterbirds to 
middle and large-sized species such as deers, bisons, elephants or bears, as well as the possibilities of 
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counting them with accuracy [6,7,12,26,27,30,49]. Wilkinson [6] also tested methods to assemble and 
georeference the images with the aim of obtaining quality mosaics to easily spot and count animals. 
These interesting first steps are probably enough to assess the number of animals in a group or in a 
population with a well-known range. However, the issue is different for many species, particularly in 
tropical areas. Most live in groups spread over very large areas, which makes it impossible to take them 
all into account. Inventories by sampling is the usual method used to estimate the population densities 
required for the management of those areas. This study demonstrates the existence of a quick, easy 
and accurate way of estimating the sampling strip area, thus offering the possibility of aerial 
inventories with UAS. 
 
In future research, it would be interesting to investigate the use of the various sampling modalities in 
order to cover in a coherent and effective way the wide areas that are usually the object of wildlife 
surveys. It is unlikely that small drones with a relatively low endurance, such as the X100, could be 
adapted for use in the systematic transects system classically implemented with piloted surveys. It is 
therefore necessary to apply adaptations to the sampling plan and to find technical solutions in order 
to improve the autonomy of UASs. 

 
Implications for conservation 
The use of small UASs in big mammal surveys is in its infancy, but it opens up very promising 
perspectives. The detection and counting of large-sized species has already been investigated and is 
considered as a viable alternative to traditional aerial survey. This research concludes that the 
computation of the sampling strip surface area, a vital piece of information for density computation, 
requires no more than the position and altitude delivered by the onboard GPS/IMU, which can be 
advantageously used for individual image footprint projection. Although photogrammetry and SfM 
techniques are of great interest for mapping tropical ecosystems, the unmanned aerial surveys of 
wildlife do not require the use of such an approach in order to deliver an estimation of the sampling 
strip surface area. 
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Appendix 1: Image Footprint Projection - an example. The input data are the telemetry data and the 
sensor specifications. The result is the projected coordinates of the four corners of the image 
footprint. 

Exterior orientation of the image 
Image name   R0020216.JPG 
X0 latitude [degree]   -1.618321541  
Y0 longitude [degree]   11.15593834  
Z0 [m]    379.088  
Kappa  [degree]   50.5  
Omega [degree]    4.3  
Phi  [degree]   0.3  
Flight altitude (H) [m]  100  
Projection of the X0 and Y0 in the Coordinate System UTM 30 Nord 
X0 [m]    650873.590857522 
X0 [m]     1233573.71612906 

Interior orientation of the camera RICOH GRIII : 
Sensor length [m] (Ls) 0.0076 
Sensor heigth (Hs)  0.0057 
Focal lenght (f)  0.00617 

Coordinate of the four corners of the sensor in the image coordinate system 
Corner up right 
x1 = Ls / 2 
y1 = Hs / 2 
Corner up left 
x2 = -Ls / 2 
y2 = Hs / 2 
Corner down left 
x3 = -Ls / 2 
y3 = -Hs / 2 
Corner down right 
x4 = Ls / 2 
y4 = -Hs / 2 

Rotational matrix to transform the image coordinate system to world coordinate system (e.g. UTM 
30 N) 
m11 = Cosinus(phi) * Cosinus(kappa) 
m12 = -Cosinus(phi) * Sinus(kappa) 
m13 = Sinus(phi) 
m21 = Cosinus(omega) * Sinus(kappa) + Sinus(omega) * Sinus(phi) * Cosinus(kappa) 
m22 = Cosinus(omega) * Cosinus(kappa) - Sinus(omega) * Sinus(phi) * Sinus(kappa) 
m23 = -Sinus(omega) * Cosinus(phi) 
m31 = Sinus(omega) * Sinus(kappa) - Cosinus(omega) * Sinus(phi) * Cosinus(kappa) 
m32 = Sinus(omega) * Cosinus(kappa) + Cosinus(omega) * Sinus(phi) * Sinus(kappa) 
m33 = Cosinus(omega) * Cosinus(phi)         

The collinearity equations 
 
Project the 4 corners of the sensor in the world coordinate system        
X1 = -H * ((m11 * x1 + m21 * y1 - m31 * f) / (m13 * x1 + m23 * y1 - m33 * f)) + X0 
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Y1 = -H * ((m12 * x1 + m22 * y1 - m32 * f) / (m13 * x1 + m23 * y1 - m33 * f)) + Y0 
X2 = -H * ((m11 * x2 + m21 * y2 - m31 * f) / (m13 * x2 + m23 * y2 - m33 * f)) + X0 
Y2 = -H * ((m12 * x2 + m22 * y2 - m32 * f) / (m13 * x2 + m23 * y2 - m33 * f)) + Y0 
X3 = -H * ((m11 * x3 + m21 * y3 - m31 * f) / (m13 * x3 + m23 * y3 - m33 * f)) + X0 
Y3 = -H * ((m12 * x3 + m22 * y3 - m32 * f) / (m13 * x3 + m23 * y3 - m33 * f)) + Y0 
X4 = -H * ((m11 * x4 + m21 * y4 - m31 * f) / (m13 * x4 + m23 * y4 - m33 * f)) + X0 
Y4 = -H * ((m12 * x4 + m22 * y4 - m32 * f) / (m13 * x4 + m23 * y4 - m33 * f)) + Y0 
 
The image footprint projection of image “R0020216.JPG” is the polygon delimited by the four corners  
(X1, Y1), (X2, Y2), (X3, Y3) and (X4, Y4), either (650941,1233551), (650865, 1233643), (650791, 
1233587) and (650872, 1233488). 

Downloaded From: https://complete.bioone.org/journals/Tropical-Conservation-Science on 14 Nov 2024
Terms of Use: https://complete.bioone.org/terms-of-use


