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Abstract

Functional redundancy is an important tool for justifying and prioritizing species protection in forest ecosystem, but it is a
scale-dependent. If functional redundancy really exists, functional trait composition tends to have higher predictive ability of
community assembly than species composition. Thus, comparing the differences in the predictive ability of community
assembly between species and functional trait compositions across spatial scale represents a useful tool to quantify how
functional redundancy varies across spatial scales. Here, we used variation partitioning in combination with distance-based
Moran’s eigenvector maps to compare the differences in the predictive ability of community assembly between species
composition and functional trait composition across spatial scales (20, 30, 40, 50, and 100 m) in a 20-ha subtropical forest
plot. We found that functional trait composition possessed higher predictive ability of niche-based abiotic filtering process
than species composition within 40 m. At 50 and 100 m scales, both species and functional trait compositions had approx-
imately equal predictive ability of dispersal limitation processes. Thus, functional redundancy can only exist within 40 m scale
but not 50 and 100 m scales. As a result, priority species loss protection should be performed at 50 and 100 m scales.
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Introduction
employed to study the processes that structure plant

communities (Legendre et al., 2009; Punchi-Manage
et al., 2014). However, this approach has limitations

Understanding the relative contributions of niche- and
neutral-based processes to the diversity and assembly of

species-rich plant communities remains a fundamental
goal in ecology (Chave, 2013; Chesson, 2000; Ricklefs,
2004; Zhang et al., 2018). Niche-based processes predict
strong correspondence between the distance decay in
species similarity and the spatial scale of environmental
variation or neighborhood interactions (Ackerly, 2004;
Gilbert & Lechowicz, 2004; Nekola & White, 1999),
whereas neutral theories predict a distance decay in spe-
cies similarity that is purely determined by the spatial
signature of dispersal processes (Hubbell, 2001).
Therefore, quantifying patterns of species similarities
across spatial scales has been one of the key tools in
assessing the relative important of niche- and neutral-
based processes in community assembly (Siefert,
Ravenscroft, Weiser, & Swenson, 2013).

Recent developments in variation-partitioning meth-
ods combined with distance-based Moran’s eigenvector
maps provide a useful set of tools to assess the relative
contributions of niche-based and neutral-based process-
es on variation in species similarity and has been widely

when the metric of species similarity is based purely on
differences in species relative abundance. Just as Leinster
and Cobbold (2012) pointed out, using species relative
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abundance to reflect species similarity is based on a
crude model in which, as long as species have different
species relative abundance, they are assumed to
have nothing in common, contrary to what every biolo-
gist knows. Ecologically, a species is a collection of
individuals with phenotypic and behavioral traits that
determine intraspecific variation between different indi-
viduals (Cadotte, Carscadden, & Mirotchnick, 2011;
Leinster & Cobbold, 2012; McGill, Enquist, Weiher, &
Westoby, 2006). This view of species as an assemblage
of traits make community ecologists increasingly realize
that community assembly processes may be more
reflected in the “traits of individuals (i.e., trait
composition)” than in the “species composition” due
to functional redundancy (Cadotte et al., 2011;
Mouillot, Graham, Villéger, Mason, & Bellwood,
2013). That is because, functional redundancy is based
on the observation that different species have the same
functional roles in communities and ecosystems so that
alterations in species composition cannot affect commu-
nity processes and even ecosystem functioning (Lawton
& Brown, 1993; Rosenfeld, 2002). In contrast, functional
trait composition can directly reflect species’ functional
roles in community and as a result can have higher pre-
dictive ability of community assembly processes, when
functional redundancy really exists (Cadotte et al., 2011;
McGill et al., 2006). However, to date, data support is
still ambiguous.

It should be noted that theory based on the classical
Lotka—Volterra competition model shows that stable
coexistence does not allow functional redundancy, as
stable coexistence requires functional complementarity
among species (Loreau, 2000). Nevertheless, spatial
and temporal abiotic variability may allow functional
redundancy to exist at small spatial and temporal
scales but not at the larger scales due to the abiotic envi-
ronment for sustaining stable coexistence (Loreau,
2004). Based on this scenario, functional trait composi-
tion should have higher predictive ability of community
assembly processes at the small scales wherein functional
redundancy can be allowed. In contrast, as functional
redundancy cannot be supported at the large scales,
species composition and functional traits composition
may have equal predictive ability of community assem-
bly processes at large scales. However, to date, data
supports remain ambiguous.

Niche-based deterministic processes are implicitly
based on plant functional attributes that are direct
measures of plant physiological tolerance to the abiotic
environment and of competitive ability that together
determine plant fitness (Grime, 2006; Westoby &
Wright, 2006). Therefore, niche and neutral processes
should also cause distinctive spatial structure in function-
al traits distributions (Siefert, 2012). This spatial structure
in functional traits can also in turn be partitioned using a

combination of constrained ordinations and distance-
based Moran’s eigenvector maps. Therefore, comparing
the results derived from variation-partitioning analyses
based on species and traits can improve our understand-
ing of the contribution of various processes to community
assembly relative to analyses based on species or
traits alone.

In this study, in a 20-ha individual tree mapped plot
in a species-rich subtropical forest in Southern China, we
constructed an extensive database of 20 key functional
trait and abundance measurements on 112 tree species
(accounting for 95% of all individuals >1 cm diameter at
breast height), and several topographic and soil variables
that represent potentially important environmental
attributes, and employed variance partitioning to evalu-
ate the, respectively, predictive power of functional and
species composition in niche-based processes (habitat fil-
tering) and neutral-based processes (e.g., dispersal limi-
tation) at multiple spatial scales (20, 30, 40, 50, and
100 m scales). Our recent work has found that abiotic
filtering and dispersal limitation dominate community
assembly of this 20-ha mega plot at relatively small
(20-40m) and large (50-100m) scales, respectively
(Zhang et al., 2018). This indicated that strong function-
al redundancy should exist at small (2040 m) scales due
to the strong abiotic filtering-induced trait convergence
at the community level. In contrast, as dispersal limita-
tion cannot generate either trait convergence or diver-
gence at the community level (de Bello et al., 2012;
Zhang et al., 2018), functional redundancy may not be
supported at the large (50-100 m) scales. As a result, we
hypothesized that functional trait composition possesses
higher predictive ability of abiotic filtering than species
composition at the relatively small scales (20, 30, and
40m) due to the strong abiotic filtering-induced func-
tional redundancy. In contrast, at larger scales (50 and
100m) wherein functional redundancy cannot be sup-
ported by the strong dispersal limitation, both species
and functional trait compositions have comparable
predictive ability of community assembly.

Methods
Study Site

The study site is located in the Dinghu Mountain
(DHM) Reserve (112°30'39"-112°33'41”E, 23°09'21"-
23°11’30"N) in Guangdong Province, Southern China.
Owing to Tibetan plateau uplift and south subtropical
monsoon climate, DHM has the unique subtropical
monsoon broad-leave forest with high species diversity.
The Reserve comprises low mountains and hilly land-
scapes (total area 1,155ha), with altitudinal range from
14 to 1,000m, covered by subtropical forests. The site
has a south subtropical monsoon climate with a mean
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annual temperature of 20.9°C, and mean monthly tem-
perature of 12.6°C and 28.0°C in January and July,
respectively. Average annual precipitation is 1,929 mm,
with most of the precipitation occurring between April
and September (Li et al., 2009). A 20-ha (400 x 500 m)
permanent forest plot was established in the core area of
DHM in 2005. The plot features rough terrain with a
steep hillside in the southeast corner. Topography varies
with ridge and valley in the plot, and the elevation
ranges from 240 to 470 m (Figure 1). All free-standing
individual stems with diameter at breast height >1cm
have been identified, labeled, and mapped.

Environmental Heterogeneity Sampling

To quantify environmental heterogeneity, we measured
both topography and soil properties at different scales.
The topography of the DHM plot was quantified by
measuring elevation at the four corners of each cell of
a 20-m grid. Elevation values at the 5-m cell size was
interpolated by ordinary kriging from 20-m data, while
the values for larger cell sizes (i.e., 20 , 30 , 40, 50, and
100 m) were based on averages of the 5-m cells. For each
cell size, we calculated the mean elevation, slope,
convexity, and aspect of each grid cell (Harms, Condit,
Hubbell, & Foster, 2001). To quantify soil properties at
different scales, we selected 208 quadrats (20 x 20 m?) in
the 20-ha plot (distributed regularly at 30-m intervals)
and collected 3 0 to 20 cm samples within each quadrat
which were analyzed individually to measure the follow-
ing soil variables: soil bulk density, soil carbon, total
nitrogen, total phosphorus, total potassium, available
nitrogen, available phosphorus, available potassium,

soil water content, and pH. We then used geostatistical
methods (ordinary kriging) following John et al. (2007)
to obtain estimates of environmental variables at each
spatial scale (20, 30, 40, 50, and 100 m).

Functional Trait Collection

In this study, we measured 20 plant functional traits
including leaf area (LA; cm?), leaf lamina thickness
(Thk; cm), leaf dry matter content (LDMC; mg kg™ '),
petiole length (Pl; m), petiole dry matter content
(Pdm; mg kg "), petiole density (Pd; g cm™?), wood den-
sity (WD; g m %), specific leaf area (SLA; cm” g ),
nitrogen content per leaf mass (Nyas: mg kg '), phos-
phorus content per leaf mass (Pmass; mg kg '), leaf
chlorophyll concentration (Chl; g m~?), maximum net
CO, assimilation rate (Ae,; pmol s~ '), photosynthetic
nitrogen use efficiency (umol mol~! s™!), photosynthet-
ic phosphorus use efficiency (mmol mol™' s™'), instan-
taneous water use efficiency (WUE;; pmol mol "), leaf
turgor loss point (Yyp; Mpa), sapwood-specific conduc-
tivity (ky; kg m~' s7'MPa "), leaf-specific conductivity
(ki; kg m ' s7'MPa '), stomatal conductance per unit
area (gs,; mmol m 2 s_l), and stomatal conductance
per unit mass (Zsmass; mmol g~' s™') for a total of 112
tree species in the 20-ha plot, sampling 3to 5 individual
adult trees of each species (Table 1). All functional
traits were determined as described in previous studies
(Zhang et al., 2018). The performance of each of the 20
functional root traits was shown in Table 2. The pro-
cedures for trait measurements were given in detail as
below.

.
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Figure |. The topographic map of the DHM plot in Dinghushan Biosphere Reserve, Southern China. (a) China, (b) Dinghu Mountain, and

(c) DHM plot (highest point 470 m, lowest point 240 m).
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Table 2. Functional Traits and Their Performance in Ecological Strategies.

Functional traits

Performance

Specific leaf area (SLA)

Nitrogen content per leaf mass (Nyass)-
Phosphorus content per leaf mass (Ppass)
Leaf chlorophyll concentration (Chl)

Leaf lamina thickness (Thk)

Leaf area (LA)

Maximum net CO, assimilation rate (A,c,)
Photosynthetic nitrogenuse efficiency (PNUE)
Photosynthetic phosphorus use efficiency (PPUE)
Instantaneous water use efficiency (WUE))
Stomatal conductance per unit area (gs,)
Stomatal conductance per unit mass (gsmass)
Leaf dry matter content (LDMC)

Wood density (WD)

Sapwood-specific conductivity (k)
Leaf-specific conductivity (k)

Leaf turgor loss point (y/tlp)

Petiole length (PI)

Petiole dry matter (Pdm)

Petiole density (Pd)

Carbon economy of leaves
Nitrogen economy of leaves
Phosphorus economy of leaves
Light capture strategy

Light capture strategy

Light capture strategy

Light capture strategy

Light capture strategy

Light capture strategy

Light capture strategy

Light capture strategy

Light capture strategy

Hydraulic conductivity

Hydraulic conductivity

Hydraulic conductivity

Hydraulic conductivity

Resistance to drought

Plant strategies for acquiring light
Plant strategies for acquiring light
Plant strategies for acquiring water

Chl and leaf and petiole morphological traits (LA, PI, Pd, Thk, SLA,
LDMC, Pdm). Chl was evaluated as the average of three
points on each leaf by a portable chlorophyll meter
(SPAD 502, Plus Chlorophyll Meter; Konica Minolta,
Ramsey, MI, USA) based on a significant positive rela-
tionship with total chlorophyll. LA, P1, and Pd were deter-
mined using a scanner (CanoScan LiDE 700F) and
analyzed with an image processing software (ImagelJ, ver-
sion 1.43 u; National Institute of Mental Health, Bethesda,
MD, USA). Thk was measured twice on each side of the
main vein at the widest part of each leaf (to avoid major
veins) using a micrometer. Leaves were then dried at 60°C
for 72h and weighed to determine leaf and petiole dry
weight. Individual leaf size and petiole density were calcu-
lated from the leaf scans using ImageJ (Rasband, 1997);
SLA was calculated as leaf size per unit of dry leaf mass
(g), and LDMC was calculated as fresh leaf mass (g) per
unit of dry leaf mass (g). Pdm was expressed as the ratio of
petiole dry mass to petiole fresh mass.

Leaf nitrogen and phosphorus content per unit mass. For LA,
20 fully expanded leaves from the top of three to five
mature individuals for each species were measured with
an LA meter (Li-3000A; Li-Cor, Lincoln, NE, USA).
Leaves were oven-dried at 70°C for 48h to determine
dry mass. SLA (cm? g ') was calculated as LA per dry
mass. The ovendried leaves were then ground to fine
powder, leaf nitrogen content per unit mass (N, Mg
kg™") was determined by Kjeldahl analysis, and leaf
phosphorus content per unit mass (Ppass; mg kg™') was
determined using atomic absorption spectrophotometry.

Leaf gas exchange rate

Measurements of maximum net CO, assimilation rate
(Auea) and stomatal conductance per unit area (g,)
were processed between 9:00 and 11:00 a.m. on sunny
days with a Li-6400 portable photosynthesis system (Li-
6400; Li-Cor). Based on preliminary trials, photosynthetic
photon flux density was set at 1,500pumol m~2 s~! to
ensure that light-saturated photosynthetic rates were mea-
sured for all species. Ambient CO, and air temperature
were maintained at 390 umol mol~" and 28°C, respective-
ly. Before data were recorded, leaves were exposed to the
above conditions for about 5min to allow photosynthetic
parameters to stabilize. Three to five individuals were
selected for each measurement and five to six sun leaves
were selected from each individual. Then, maximum CO,
assimilation rate per unit mass (Apgss tmol g~ ' s™!) was
calculated as SLA x A,.../10. Stomatal conductance per
unit mass (Zumasss Mmol g ' s7!) was calculated as
SLA X g5,/10. WUE; was calculated as A a/gS.
Photosynthetic nitrogen use efficiency was calculated as
Anass/ Nmass:  Photosynthetic phosphorus use efficiency
was calculated as A ,a55/Prmass.

WD, branch and leaf hydraulic conductivity, and
sapwood density

A total of 10 healthy and leaf-bearing branches (6—8 mm
in diameter) from the top of three to five mature indi-
viduals for each species were cut off in early morning,
sealed in black plastic bags with moist towels, and trans-
ported to the Ilaboratory immediately. Before
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measurement, all of the branch samples were recut under
water, and the cut ends were trimmed with a razor blade.
The branch segments used in experiments were about 20
to 25cm long. To remove air embolisms, branch seg-
ments were perfused with a filtered (diameter: 0.2 um)
20mmol KCI solution at a pressure of 0.1 MPa for
20 min. Each segment was then connected to a hydraulic
conductivity-measurement apparatus following the
method in Sperry, Donnelly, and Tyree (1988). An ele-
vated water reservoir supplied the same perfusion solu-
tion to the segment, with a head pressure of about
6 KPa. Water flow through the segment was allowed to
equilibrate for about 10min, after which the mass of
water flux though the segment over time (in seconds)
was measured. Maximum hydraulic conductivity of the
segment (k) was calculated as ky, = FL/AP, where F is
the flow rate (kg s~ '), AP is the pressure gradient (MPa)
through the segment, and L is the length of the segment
(m). Sapwood-specific hydraulic conductivity (ks,
kg m~' sT'MPa™!) is equivalent to ky, divided by the
mean value of sapwood cross-sectional area of both
ends of the branch segment. Leaf-specific hydraulic con-
ductivity (k;, kg m~' s7'MPa ') is calculated as k,/LA.

Sapwood density (WD) was determined from the
same branch segments that were used for hydraulic con-
ductivity measurements. The volume of fresh sapwood
(with bark and pith removed) was determined by the
water displacement method (Poorter et al., 2010), and
its dry mass was subsequently determined after oven-
drying at 70°C for 72h. Then, WD (g cm ) was calcu-
lated as the ratio of dry mass to fresh volume.

Leaf pressure—volume relationships

Leaf-bearing branches from three to five individuals of
each species were harvested and transferred to the labo-
ratory where the basal ends of the branches were
immersed in distilled water and recut (5cm removed).
The branch samples were rehydrated until leaf water
potential was greater than —0.05MPa. Leaves were
first weighed to obtain the initial fresh mass and then
immediately placed in a pressure chamber to determine
the initial water potential. Leaf mass and water potential
were measured periodically during slow desiccation in
the laboratory. Finally, leaves were oven-dried for 72 h
at 70°C to determine their dry mass. Leaf water potential
at turgor loss point (\ry,) was determined with a pres-
sure—volume relationship analysis program developed by
Schulte and Hinckley (1985).

Statistical Methods

Construction of functional trait composition across spatial
scales. Functional trait composition can be described as
community weighted mean (CWM) value. As one of the
good indicators for functional trait-environment

relationships, CWM describes how species respond to
the environment and tends to show high sensitivity to
environmental changes (Diaz & Cabido, 2001; Diaz,
Cabido, & Casanoves, 1998; Vandewalle et al., 2010).
Moreover, CWM can directly capture functional simi-
larity among species and thus can be the direct measure
of functional redundancy (Cadotte et al., 2011). Hence,
we computed the CWM values of the 20 traits for each
spatial scale. Here, species trait values were weighted by
their quadrat abundance, and the weighted values were
then summed over all species in the quadrat for each
scale. These values for each quadrat and each trait
were tabulated with quadrats in rows and CWMs of
trait values in columns.

Evaluating the relative contribution of environmental, spatial
factors in determining both species and functional trait
compositions at multiple spatial scales. We firstly used
Moran’s eigenvector mapping Legendre and Legendre
(2012) to quantify spatial structure in functional trait
composition at each spatial scale. Moran’s eigenvector
mapping was based on the principal coordinates of
neighbor matrix (PCNM) axes (Borcard & Legendre,
2002; Borcard, Legendre, Avois-Jacquet, & Tuomisto,
2004), which could also be used to describe the spatial
structure or correlation of both species and functional
trait compositions (Liu, Swenson, Zhang, & Ma, 2013).
All spatial variables were represented by PCNM eigen-
functions calculated by principal coordinate analysis.
Then, we used the R function poly to quantify the poly-
nomial terms for each variable measured such that both
linear and nonlinear relationships between abiotic vari-
ables and both species and functional trait compositions
were analyzed. Based on an initial investigation of trait—
environment relationships (Zhang et al., 2015), we used
the first- and second-order terms for soil bulk density
and pH, and the first through third-order terms for
total nitrogen, available nitrogen, total phosphorus,
available phosphorus, total potassium, available potas-
sium, soil water content, soil carbon, mean elevation,
slope, and convexity. Aspect (degrees from north) was
decomposed into east—west and north—south orientation
using sin (aspect) and cos (aspect). We also used the
method developed by Blanchet, Legendre, and Borcard
(2008; “packfor” library in R; R Core Team, 2013) to
forward-select which of the polynomials of all measured
abiotic variables and spatial variables were significant
predictors of both species and functional trait composi-
tions across spatial scales. Finally, we used variance-
partitioning method (Legendre & Legendre, 2012) to
allocate both species composition and functional trait
composition variations as arising from the four comple-
mentary contributions (components): (a) “‘purely
abiotic” (proportions that only can be explained by abi-
otic factors), (b) “spatially structured abiotic” (spatial
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structure in both species and functional trait composi-
tions induced by abiotic variables), (c) “purely spatial”
(proportions that only can be explained dispersal limita-
tion), and (d) “undetermined” (Zhang et al., 2018). All
variance partitioning was done across spatial scales
using the function “varpart” in R.

Results

Our variance-partitioning results demonstrated that
functional trait composition can directly reveal the dom-
inating role of abiotic filtering in determining communi-
ty assembly at relatively small scales (20, 30, and 40 m),
whereas species composition cannot achieve this. That is
because abiotic filtering represented by the sum of purely
abiotic variables and spatially structured abiotic varia-
bles explained large proportions (61%—-66%) of the var-
iations in functional trait composition (Figure 3). In
contrast, less than 50% of the variations in species com-
position were captured by abiotic filtering (Figure 2). At
relatively large scales (50 and 100 m), both species com-
position and functional trait composition can uncover
the dominating role of dispersal limitation in community
assembly. That is because dispersal limitation repre-
sented by purely spatial variables (12 to 340 PCNM
eigenfunctions) explained a large proportion of the var-
iance in both species composition (51%—-55%) and func-
tional trait composition (61%—-68%; Figures 2 and 3).

Discussion

Topography and soil variables all show different spatial
structure; therefore, the importance of abiotic filtering
increases with spatial scale (Borcard et al., 2004; John
et al., 2007; Legendre et al., 2009; Portmann, Solomon,
& Hegerl, 2009). However, these findings are all based
on the effects of abiotic filtering on species composition.
As functional redundancy can be supported at the rela-
tively small scales (Loreau, 2004), compared with species
composition, functional trait composition may better
reflect the importance of abiotic filtering in community
assembly at relatively small scales. Indeed, our variance-
partitioning results showed that abiotic variables explain
large proportions (61%-66%) of functional trait com-
position at relatively small scales (20, 30, and 40m
scales), indicating the dominating roles of abiotic filter-
ing in community assembly of subtropical forest com-
munity at relatively small scales (20, 30, and 40 m scales).
However less than 50% proportions of species composi-
tion are explained by abiotic variables at relatively small
scales (20, 30, and 40 m scales) and thus cannot directly
reveal the dominating roles of habitat filtering. Hence,
assembly rules based on functional trait composition is
indeed better than species composition in revealing the
dominating roles of niche-based habitat filtering in

mmmm Purely abiotic variables

Spatially structure abiotic variables
m=mmm Purely spatial variables

==% Unexplained

0.5

Variations of functional trait compositions

00 -
20 30 40 50 100

Scales (m)

Figure 2. The distributions of functional trait composition rep-
resented by CWM for all 20 functional traits measured of 112 tree
species that account for 95% individual stems (with diameter at
breast height > | cm) within 20-ha DHM plot across spatial scales.
Variations of functional trait composition explained by purely
abiotic, spatially structured abiotic, purely spatial, or undetermined
predictors are measured by R%adj, and it is shown if it is statistically
significant (p <.05). Each analysis is performed on all quadrats
across spatial scales.

community assembly at relatively small scales (20, 30,
and 40 m scales).

Species composition contains 112 species abundance
variables, whereas functional trait composition only
includes 20 CWMs. Hence, based on the statistic
assumption, species composition should show higher
explaining power of community assembly compared
with functional trait composition. However, the
variance-partitioning results showed that functional
trait composition but not species composition can
reveal the dominating role of abiotic filtering at relative-
ly small scales (20, 30, and 40m scales). One possible
reason is that strong functional redundancy should
exist at relatively small scales, thereby making alteration
in species composition cannot affect community assem-
bly processes (Loreau, 2004). As CWM can directly
reflect traits for dominating species (Cadotte, 2017),
trait convergence in dominating species resulting from
the strong abiotic filtering at relatively small scales
(20-40m) predominated  community  assembly
(Zhang et al., 2018), and thus make many species
becomes redundant. As a result, our first hypothesis
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mmmm Purely abiotic variables

=xxms Spatially structure abiotic variables
=mmm Purely spatial variables
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Figure 3. The distributions of species composition of |12 tree
species that account for 95% individual stems (with diameter at
breast height > | cm) within 20-ha DHM plot across spatial scales.
Variations of species composition explained by purely abiotic,
spatially structured abiotic, purely spatial, or undetermined pre-
dictors are measured by R%adj, and it is shown if it is statistically
significant (p < .05). Each analysis is performed on all quadrats
across spatial scales.

that “functional trait composition possesses higher pre-
dictive ability of abiotic filtering than species composi-
tion at the relatively small scales (20, 30, and 40 m) due
to abiotic filtering-induced strong functional redun-
dancy” was supported.

At 50 and 100 m scales, the effects of abiotic variables
on both species composition and functional trait com-
position tapered off to 5% and null. The dominant and
majority effect on both species and functional trait com-
positions is simply due to dispersal limitation (51%—
55% and 61%—68% at 50 and 100 m scales, respective-
ly). One possible reason is that dissimilarity at large cell
sizes (100 x 100 m) is quite small, suggesting that forests
are relatively homogenous at such scales (De Caceres
et al., 2012; Sreekar, Katabuchi, Nakamura, Corlett, &
Slik, 2018). This may be why only dispersal limitation
effected tree community assembly at large spatial scales.
Indeed, our previous work have found that variances of
our measured abiotic variables were high at scales from
20 to 40 m, while at 50 and 100 m scales, the variances of
these three abiotic variables were rather low (Zhang
et al., 2018). This indicated that forests are relatively
heterogeneous at scales from 20 to 40m but

homogeneous at 50 and 100m scales. Thus, it is not
surprised to see only dispersal limitation dominate com-
munity assembly at 50 and 100 m scale. As dispersal lim-
itation can allow for neither trait convergence nor trait
divergence, our results confirm that functional redun-
dancy cannot be supported within 40 m scale (Loreau,
2004). However, we are for the first time to reveal that
except for the abiotic environments for maintaining
coexistence (Loreau, 2000), dispersal limitation may
also be one possible mechanism for preventing function-
al redundancy at relatively large scales. In addition, our
second hypothesis that, at 50 and 100 m scales wherein
functional redundancy cannot be supported by the
strong dispersal limitation, both species and functional
trait compositions have comparable predictive ability of
community assembly, was also supported.

It is important to note that our unexplained propor-
tions could be attributed to unmeasured spatially struc-
tured abiotic variables and neutral processes (Legendre
et al., 2009). Although we have measured a number of
important abiotic factors including topographic and soil
variables, some contributions of unmeasured abiotic
variables (e.g., cation exchange capacity, micronutrient
availability) and neutral processes to the observed spa-
tial structures of functional and species composition
cannot be ruled out and merit further investigation
(Siefert et al., 2013). Moreover, although we collect 20
functional traits that have direct influence on plant per-
formance and fitness, by no means is our data set an
exhaustive set of all important functional traits.
Several traits that are important for plant reproduction,
dispersal, and recruitment are not included in this study.
For instance, seed mass is a key trait that may be
involved in competition and dispersal ability, thus rep-
resenting an important axis of plant life history differen-
tiation (Coomes & Grubb, 2003; Turnbull, Paul-Victor,
Schmid, & Purves, 2008; Zhang, Gilbert, Zhang, &
Zhou, 2013). Arguably therefore, our assessments on
the relative importance of dispersal effects at larger
scales (50 and 100 m scales) need to be further tested
with more dispersal related trait data once they
become available. In addition, the explaining power of
abiotic and spatial variables for species compositions is
inconsistent with Legendre et al. (2009) which shows
that variation of species composition explained by abi-
otic and spatial variables increases and decreases with
cell size, respectively. This may indicate a possibility of
site-specific patterns, which also merit future investiga-
tion in other forest plots.

Taken together, our results for the first time to pro-
vide the empirical proof for the scale-dependent intensity
of functional redundancy. More important, our results
further revealed that the differences in the predictive
abilities of community assembly between species compo-
sition and functional traits composition varied with the
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spatial-dependent intensity of functional redundancy.
Niche-based assembly rules based on functional trait
composition is indeed better than species composition
at relatively small scales (20-40 m), wherein strong func-
tional redundancy can be supported. However, species
composition and functional trait composition have the
equal predictive ability of community assembly process-
es at large scales, wherein strong dispersal limitation
cannot allow for functional redundancy.

Implications for Conservation

The acceleration of biodiversity loss has impaired eco-
system functioning including energy transformation and
matter cycling, which in turn lead to newly generated
biodiversity loss (Rosenfeld, 2002). As a result, main-
taining the integrity of ecosystem function is the best
way to minimize species loss (Walker, 1992; Wellnitz &
Poff, 2001). Based on this scenario, functional redundan-
cy is an important tool for justifying and prioritizing
species protection (Rosenfeld, 2002). That is because
strong functional redundancy tends to make some spe-
cies have similar contributions to ecosystem functioning,
and species loss therefore has little impact on ecosystem
functioning (Lawton & Brown, 1993). Thus, priority
conservation effort should be put when there is little or
no redundancy (Walker, 1992). Our results have found
that functional redundancy cannot exist at 50 and 100 m
scales for our tropical forest megaplot, as a result, pri-
ority species loss protection should be performed at 50
and 100 m scales. As dispersal limitation is the key factor
for not allowing for functional redundancy at 50 and
100m scales, active seedling of lost species may be a
good way to recover species loss at large scales, if the
species loss really exists.
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