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Abstract: The informational odds ratio (IOR) measures the post-exposure odds divided by the pre-exposure odds (ie, information 
gained after knowing exposure status). A desirable property of an adjusted ratio estimate is collapsibility (ie, the combined crude ratio 
will not change after adjusting for a variable that is not a confounder). Adjusted traditional odds ratios (TORs) are not collapsible. In 
contrast, Mantel-Haenszel adjusted IORs generally are collapsible. IORs are a useful measure of disease association in environmental 
case-referent studies, especially when the disease is common in the exposed and/or unexposed groups.
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Introduction
A central theme of environmental epidemiology is to 
quantify the occurrence (eg, incidence, prevalence) 
and/or outcome (eg, morbidity, mortality) of 
disease among a population exposed to a putative 
environmental hazard. The exposed population is 
then compared with a non-exposed population to 
determine if exposure is associated with disease. The 
environmental hazard may be behavioral in nature 
(eg, cigarette smoking, methamphetamine use, fat in 
diet), the consequence of modern lifestyle (eg, job 
stress, inadequate sleep), a by-product of industry 
(eg, air population, groundwater contamination, 
mercury in fish), or attributable to other sources in 
one’s surroundings (eg, automobile exhaust, pesticide 
spraying, off-gassing of indoor building materials). 
Furthermore, the timing of the exposure may be short-
lived, long-term, retrospective, prospective, current 
(ecologic), and/or ongoing. A short-term exposure to 
a very hazardous agent may convey the same impact 
on health as the continuous exposure to a relatively 
minor hazard. Gene-environment interaction also 
may play an important role in the underlying disease 
process.1

Different epidemiologic measures are available 
to gauge the association between environmental 
exposure and disease. The application of a particular 
measure depends on the underlying properties of the 
measure and the respective context of the study.2 
A frequently used measure of disease association 
in environmental exposure studies is the traditional 
odds ratio (TOR). This measure is defined as the odds 
for disease given exposure divided by the odds for 
disease given no exposure (Fig.  1). TORs have the 
distinct advantage of being invariant to rotation. That 
is, the disease TOR [ie, (a/b)/(c/d)] is equal to the 

exposure TOR [ie, (a/c)/(b/d)]. Furthermore, when 
disease is rare among both the exposed and non-
exposed groups, TORs often are used in retrospective 
analyses as an approximate measure of relative risk 
(RR) [ie, TOR ≈ RR = (a/e)/(c/f)].3

An alternative measure of disease association 
closely related to the TOR is the informational odds 
ratio (IOR). The IOR measures the probability for 
exposure given disease divided by the probability for 
exposure given no disease (Fig. 1). Using Bayes theo-
rem, it is easy to see that the IOR is equivalent to the 
post-exposure odds divided by the pre-exposure odds 
(Fig.  2).4 The IOR resembles the traditional odds 
ratio (TOR) except that the probability terms in the 
denominator (ie, P(D) P(D)/ ) are not conditioned on 
the absence of exposure (ie, P(D E ) P(D E )/ ). When 
defined in the context of a receiver operator curve 
(ROC), the IOR also may be computed by multiplying 
the TOR by the likelihood ratio for a negative expo-
sure (LR‑) (ie, P(E D) P(E D)/ ) (Fig. 3). Referring 
to Figure 1, TOR = (a/b)/(c/d) = 2.58 and LR- = (c/d)/
(g/h) = 0.56. Accordingly, IOR = 2.58*0.56. = 1.44. 
The IOR is interpreted as an outcome measure of 
information gained after knowing exposure status and 
may be used in case-referent studies independent of 
whether the disease is rare or common. When expo-
sure is rare in both disease and non-disease groups, 
TOR ≈ IOR.

A desirable property of an adjusted ratio estimate 
is collapsibility (ie, the combined crude ratio will 
not change after adjusting for a variable that is not 
a confounder). TORs are not collapsible.5,6 Applying 
standard techniques, we illustrate two approaches for 
computing a common IOR and 100(1-α)% confi-
dence intervals (CIs) and compare the measures with 
respect to collapsibility.
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Figure 1. Computing TOR and IOR from a 2 × 2 contingency table.
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Methods
95% robust (Normal theory)  
CI estimate for IOR
Given a single stratum ( j), a large-sample (asymp-
totically consistent) estimate for var{log(IORj)} 
may be derived using the delta-method (based 
on a first order Taylor series) and is seen to equal 
(1 1 1 1/ / / /a − + −g b h) (Fig.  4).7,8 The latter is 
equivalent to the robust “sandwich” estimate for 
var{log(IORj)}.9,10 IORs are ratios of probabilities 
and confidence intervals are computed in an analo-
gous manner as risk ratios.11 Applying the central 
limit theorem (CLT), the computational formula for 
a 100(1-α)% robust (normal theory) CI estimate 
for IORj is given in Figure 5.12 The 95% CIRobust esti-
mate for the crude IOR shown in Figure 1 is given  
as (1.38–1.50).

Covariate adjusted (pooled) estimate 
and 100(1-α)% confidence interval  
(CI) for stratified IOR
A summary estimate or common IOR for a series of 
2 × 2 tables may be easily computed by taking the 
weighted average of stratum-specific IORs, given 
a fixed-effects model (ie, barring chance, the treat-
ment effect is similar in all strata). Two main weight-
ing techniques for pooling data across stratum are 
traditionally used in practice to compute combined 
relative-effect estimates.13 Below, the methods are 
presented in the context of estimating a covariate-
adjusted IOR and corresponding 100(1-α)%.

IOR
P(E|D)

P(E|D

P(D|E)P(E)

P(D)
P(D|E)P(E)

P(D

= =

















)

)





















= =

P(D|E)

P(D|E)
P(D)

P(D

Post-exposure odds

Pre ex
)

pposure odds

a
b

g
h

=












.

Figure 2.  Equivalence between IOR and the post-exposure odds divided by the pre-exposure odds.

Woolf method
Assuming IORs are not significantly heterogeneous 
for k ( j = 1 to k) strata and applying Woolf’s weighted 
least squares method, the logarithm of the covariate 
adjusted (pooled) estimate for a stratified IOR [ie, 
log(IORWoolf)] may be obtained by weighting the loga-
rithm of each stratum-specific IORj estimate inversely 
proportional to its estimated variance (Fig.  6).14,15 
A 100(1-α)% normal theory CI estimate for IORWoolf is 
given in Figure 7.

Mantel-Haenszel method
The IOR also may be expressed as the cross-frequency 
for the ath cell (ie, a*h/i) of a 2 × 2 table divided by 
cross-frequency for the cth cell (ie, b*g/i). Given 
a series of 2 × 2 tables (stratum) indexed by (j = 1 
to k), the weighted Mantel-Haenszel estimate for 
the common IOR is then computed by separately 
summing the cross-frequency terms in the numer-
ator and denominator of the IOR estimate over 
each of the (k) stratum (Fig. 8).16 Here again, we 
have assumed that the IORs are not significantly 
heterogeneous for k (j  =  1 to k) strata. The term 
(w) defined in Figure 4, which denotes the inverse 
var IOR{log ( )}  estimate, also may be written as a 
function of the cross-frequencies for the ath and 
cth cell (Fig. 9). A pooled estimate for (w) is then 
computed by separately summing the terms in the 
numerator and denominator over each of the (k) 
stratum (j = 1 to k) (Fig. 10).17 Applying the central 
limit theorem, a robust 100(1-α)% normal theory 
CI estimate for IORMH is given in Figure 11. Note, 

Figure 3. Relationship between IOR, TOR and LR-. 

IOR

P(D|E)

P(D|E)
P(D)

P(D

P(D|E)

P(D|E)
P(D| )

P(D|

= =

















)
E

E))

P(D| )

P(D)
P(D| )

P(D

OR 
P( |D)

P(

































∗ = ∗

E

E
T

E

E

)

||D)
OR 

1 sensitivity

Specificity
OR R= ∗ = ∗T T L

− ‑ .

Downloaded From: https://complete.bioone.org/journals/Environmental-Health-Insights on 27 May 2025
Terms of Use: https://complete.bioone.org/terms-of-use

http://www.la-press.com


Efird et al

20	 Environmental Health Insights 2012:6

the IORMH estimate will always be bounded by the  
minimum and maximum of the stratum specific 
IORs estimates, since it represents a weighted aver-
age of the individual stratum. If the disease ratios 
gj/hj are constant across strata, the Mantel-Haenszel 
estimate for IOR will equal the combine crude 
IOR.17 When bj/hj are not constant across strata the 
variance estimate of the combined crude IOR will 
not be consistent and the Mantel-Haenszel estimate 
is generally recommended as the measure of asso-
ciation in this case.17

Results
Comparison of the Woolf  
and Mantel-Haenszel methods  
with respect to collapsibility
A confounding variable is an extraneous variable that 
masks the true influence of a putative causal variable 
on the effect (outcome) being studied. By definition, it 

must be related to both the cause and effect variables.3 
Consider the association between “crystal meth” 
(methamphetamine) use and cardiomyopathy in young 
patients.18 Crystal meth users tend to be cigarette smok-
ers and cigarette smoking potentially is associated with 
cardiomyopathy.19 Failing to adjust for cigarette smok-
ing may confound the association between crystal meth 
use and cardiomyopathy. An estimate is collapsible if 
the combined crude estimate does not change after 
adjusting for a variable that is not a confounder. It is 
well known that adjusted TORs are not collapsible.5,6

Consider the stratified data shown in Figures 12 
and 13 corresponding to the collapsed data pre-
sented in Figure  1. If Exposure (E) represents 
the causal factor and Death (D) the effect, then 
Sex (S) is not a confounding variable since it is 
not related to Death on either the TOR or IOR  
scale (ie, TORcrude

  = 1.0, IORcrude
  = 1.0). However, 

if Sex (S) represents the causal factor and Death 
(D) the effect, then Exposure (E) is a confounder 

Delta-method: Var(  f  (X) ≈ [ f ′(mX)]2 Var(X). If f(X) = log(X), then f  ′(X) = 1/x.

Assuming A~Bin (g,a/g) and B~Bin(h,b/h) and applying the delta-method, it follows that 
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Figure 4. Derivation of Var{log( )}IOR  using the delta-method.
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Figure 5. Computing a robust 100(1-α)% confidence interval estimate for IOR.
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Figure 7. Computing an 100(1-α)% confidence interval estimate for IORWoolf. 

Figure 8.  Mantel-Haenszel estimate for a common IOR.
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because it is related to both Death (TORcrude
  = 2.58, 

IORcrude
   =  1.44) and Sex (TORcrude

 =  3.09, 
IORcrude
   =  1.54). Referring to Figure  14, we see 
that neither TOR Woolf

  = 2.79 nor TORMH
  = 2.79 are 

collapsible with respect to sex because both adjusted 
estimates differ from the combined TORcrude

  = 2.58. 
However, referring to Figure  15 we see that the 
adjusted Mantel-Haenszel estimate for this example 
is collapsible with respect to sex (ie, IORMH

  = 1.44 = 
IORcrude
 ). On the other hand the adjusted Woof esti-
mate is not is collapsible with respect to sex (ie, 
IOR Woolf
   =  1.37 # crudeIOR ). The IORWoolf estimate 
is based on a non-linear (logarithmic) weighted 
estimate of stratum-specific IORs and accord-
ingly the combined crude IOR does not necessar-
ily remain constant after adjusting for a variable 
that is not a confounder. In our simple example, 
we see that the results obtained by the Mantel-
Haenszel method are identical to those obtained 
from a Poisson regression model using robust vari-
ance estimation.

Exact confidence intervals for IOR
When sample sizes are small, an exact unconditional 
CI estimate may be computed for the IOR. However, 
due to the discrete nature of the problem, the result-

ing CI estimates tend to be very wide. Consider the 
case when exposure is rare in both disease and non-
disease groups (ie, TOR  ≈  IOR). In the example 
shown in Figure 16, we see that the standard exact CI 
estimate for the IOR20 is considerably wider than the 
standard exact CI estimate for the TOR21 even though 
one would expect the coverage to be nearly equal. 
Furthermore, as illustrated in Figure 17, the standard 
exact CI for the IOR estimate is neither asymptoti-
cally efficient nor consistent. A pseudo “continuity-
adjusted” exact confidence interval based on the 
Farrington-Manning score statistic provides better 
coverage in some cases, however the resulting CIs 
may be too narrow when one or more cell sizes are 
very small, as illustrated in Figure  16 (IOR  =  1.0, 
CIMF  =  0.0594–11.1435).22 By parallel analogy, the 
above small-sample concerns identically apply to 
RR estimates. Methods for improving the nominal 
coverage (ie, at least 1-α) of unconditional exact 
marginal effect estimates have been suggested in the 
literature.23

Discussion
A desirable property of an adjusted ratio estimate is 
that the combined crude ratio will not change after 
adjusting for a variable that is not a confounder 

Males Females
Disease →  
↓ Exposure

D D Total Disease →  
↓ Exposure

D D Total

E a = 1356 b = 1040 e = 2396 E a = 996 b = 560 e = 1556
E c = 276 d = 560 f = 836 E c = 636 d = 1040 f = 1676

Total g = 1632 h = 1600 i = 3232 Total g = 1632 h = 1600 i = 3232
TOR = 2.65 (95% CIExact = 2.24–3.13) TOR = 2.91 (95% CIExact = 2.51–3.36)
IOR = 1.28 (95% CIRobust = 1.23–1.33) IOR = 1.74 (95% CIRobust = 1.61–1.88)

All patients All patients
Disease →  
↓ Sex

D D Total Exposure →  
↓ Sex

E e Total

Male a = 1632 b = 1600 e = 3232 Male a = 2396 b = 836 e = 3232
Female c = 1632 d = 1600 f = 3232 Female c = 1556 d = 1674 f = 3232
Total g = 3264 h = 3200 i = 6464 Total g = 3952 h = 2512 i = 6464
TOR = 1.00 (95% CIExact = 0.91–1.10) TOR = 3.09 (95% CIExact = 2.78–3.43)
IOR = 1.00 (95% CIRobust = 0.95–1.05) IOR = 1.82 (95% CIRobust = 1.71–1.94)

Figure 12. Contingency tables corresponding to data in Figure 1 stratified by sex.
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Exposed Non-exposed
Disease →  
↓ Sex

D D Total Disease →  
↓ Sex

D D Total

Male a = 1356 b = 1040 e = 2396 Male a = 276 b = 560 e = 836
Female c = 996 d = 560 f = 1556 Female c = 636 d = 1040 f = 1676
Total g = 2352 h = 1600 i = 3952 Total g = 912 h = 1600 i = 2512
TOR = 0.73 (95% CIExact = 0.64–0.84) TOR = 0.81 (95% CIExact = 0.67–0.93)
IOR = 0.89 (95% CIRobust = 0.84–0.93) IOR = 0.86 (95% CIRobust = 0.77–0.97)

All patients All patients
Disease →  
↓ Exposure

D D Total Sex→  
↓ Exposure

Male Female Total

E a = 2352 b = 1600 e = 3952 E a = 2396 b = 1556 e = 3952
E c = 912 d = 1600 f = 2512 E c = 836 d = 1676 f = 2512
Total g = 3264 h = 3200 i = 6464 Total g = 3232 h = 3232 i = 6464
TOR = 2.58 (95% CIExact = 2.32–2.86) TOR = 3.09 (95% CIExact = 2.78–3.43)
IOR = 1.44 (95% CIRobust = 1.38–1.50) IOR = 1.54 (95% CIRobust = 1.48–1.60)

Figure 13. Contingency tables corresponding to data in Figure 1 stratified by exposure.

Characteristic ↓ IORCrude  
(95% CI)

IORWoolf  
(95% CI)

IORMH
† 

(95% CI)
IORPR

‡ 
(95% CI)

Exposure
  E 1.00 referent 1.00 referent 1.00 referent 1.00 referent
  E 1.44 (1.38–1.50) 1.37 (1.32–1.42) 1.44 (1.39–1.50) 1.44 (1.39–1.50)
Sex
  Female 1.00 referent 1.00 referent 1.00 referent 1.00 referent
  Male 1.00 (0.95–1.05) 0.88 (0.84–0.93) 0.88 (0.84–0.92) 0.88 (0.84–0.92)

Notes:†Adjusted Mantel-Haenszel estimate; ‡Adjusted Poisson regression estimate.

Figure 15. Crude and adjusted IOR estimates corresponding to data in Figures 1, 12 and 13.

Characteristic ↓ TORCrude (95% CI) TORWoolf (95% CI) TORMH
† (95% CI) TORLR

‡ (95% CI)
Exposure

  E 1.00 referent 1.00 referent 1.00 referent 1.00 referent
  E 2.58 (2.32–2.86) 2.79 (2.51–3.11) 2.79 (2.50–3.11) 2.79 (2.51–3.11)
Sex
  Female 1.00 referent 1.00 referent 1.00 referent 1.00 referent
  Male 1.00 (0.91–1.10) 0.76 (0.68–0.84) 0.76 (0.68–0.84) 0.76 (0.68–0.84)

Notes: †Adjusted Mantel-Haenszel estimate; ‡Adjusted logistic regression estimate.

Figure 14. Crude and adjusted TOR estimates corresponding to data in Figures 1, 12 and 13.

Disease →  
↓ Exposure

D D Total

E a = 1 b = 2 e = 3     TOR = 1.00 (95% CIExact = 0.0169–19.2944)
E c = 250 d = 500 f = 750     IOR = 1.00 (95% CIExact = 0.0001–29.3570)
Total g = 251 h = 502 i = 753     IOR = 1.00 (95% CIFM = 0.0594–11.1435)

Figure 16. Comparison of exact confidence interval procedures for TOR and IOR.
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Disease →  
↓ Exposure

D D Total

E a = 1440 b = 480 e = 1920     IOR = 3.00 (95% CIAsymptotic = 2.7392–3.2856)
E c = 1760 d = 2720 f = 4480     IOR = 3.00 (95% CIExact = 0.2696–1171.4405)
Total g = 3200 h = 3200 i = 6400

Figure 17. Comparison of asymptotic and exact confidence interval procedures for IOR.

(ie, collapsibility). It is well known in the literature that 
adjusted TORs are not collapsible. This is illustrated 
in Figure 14, where both the TORWoolf and TORMH sex 
adjusted estimates differed from the combined crude 
TOR, even though sex is not a confounding variable. 
In prospective (cohort) studies, the association between 
a putative exposure and disease adjusting for other 
important model variables may be computed using the 
generally collapsible Mantel-Haenszel RR estimate. 
When disease is rare among both the exposed and non-
exposure groups in a case-referent study, the TOR and 
RR estimates will be approximately equal. However, the 
outcome of interest in some retrospective environment 
exposure studies may be fairly common and the TOR 
estimate will not equal the combined crude estimate 
after adjusting for a variable that is not a confounder.

The IOR is a useful measure of association in 
environmental case-referent studies, especially when 
the outcome under consideration is known to occur 
frequently. Similar to RRs, Mantel-Haenszel adjusted 
IORs are generally collapsible (criteria for simple and 
strict collapsibility are discussed in the literature6,24,25). 
The IOR measures how much more (or less) likely 
patients with the disease have a particular exposure 
than those without disease (ie, the post-exposure 
odds divided by the pre-exposure odds).11 Similar to 
other relative effect estimates IORs are logarithmic, 
meaning that a value of 1.0 corresponds to no 
association between exposure and disease, while an 
IOR greater/less than unity indicates a positive/
negative association with disease.
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