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ABSTRACT
Predictable seasonal changes in resources are thought to drive the timing of annual animal migrations; however, we
currently understand little about which environmental cues or resources are tracked by different migratory bird
species across the planet. Understanding which environmental cues or resources birds track in multiple migratory
systems is a prerequisite to developing generalizable conservation plans for migratory birds in a changing global
environment. Within the New World, climatic differences experienced by Nearctic–Neotropical migratory (NNM; i.e.
breed in North America and spend the nonbreeding period in the Neotropics) and Neotropical austral migratory (NAM;
i.e. breed and spend the nonbreeding period wholly within South America) bird species suggest that their migratory
strategies may be shaped by unique selective pressures. We used data gathered from individuals fitted with light-level
geolocators to build species distribution models (SDMs) to test which environmental factors drive the migratory
strategies of species in each system. To do so, we evaluated whether temperature, precipitation, and primary
productivity (NDVI) were related to the seasonal distributions of an NNM (Eastern Kingbird [Tyrannus tyrannus]) and
NAM species (Fork-tailed Flycatcher [T. savana]). Both Eastern Kingbird and Fork-tailed Flycatcher locations were
positively correlated with high precipitation during their nonbreeding seasons. Eastern Kingbird locations were
positively correlated with both NDVI and temperature during their breeding season and both pre- and post-breeding
migrations. Fork-tailed Flycatcher locations were positively correlated with both temperature and precipitation during
both migrations, but only temperature during the breeding season. The value of extending the application of
geolocator data, such as in SDMs, is underscored by the finding that precipitation was such an important predictor of
the nonbreeding distributions of both types of migrants, as it remains unclear how global climate change will affect
wet–dry cycles in the tropics.
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¿Siguiendo la lluvia? Controladores ambientales de la migración de Tyrannus a través del Nuevo Mundo

RESUMEN
Se piensa que los cambios estacionales de los recursos controlan el momento de la migración anual de los animales;
sin embargo, es poco lo que entendemos actualmente sobre cuáles son las señales ambientales o los recursos que las
diferentes especies de aves migratorias siguen a lo largo del planeta. Entender cuáles son las señales ambientales o los
recursos que las aves siguen en múltiples sistemas migratorios es un prerrequisito para desarrollar planes de
conservación generalizados para las aves migratorias en un ambiente global cambiante. En el Nuevo Mundo, las
diferencias climáticas que viven las especies de aves migratorias neártico-neotropicales (MNN; i.e., se reproducen en
América del Norte y pasan el perı́odo no reproductivo en el Neotrópico) y las migratorias australes del neotrópico
(MAN; i.e., se reproducen y pasan el perı́odo no reproductivo de modo completo en América del Sur) sugieren que sus
estrategias migratorias pueden estar moldeadas por las mismas presiones de selección. Usamos datos recopilados a
partir de individuos provistos de geo-localizadores de nivel de luz para construir modelos de distribución de especies
(MDEs) y ası́ evaluar qué factores ambientales controlan las estrategias migratorias de las especies en cada sistema.
Para hacer esto, evaluamos si la temperatura, la precipitación y la productividad primaria (NDVI) estuvieron
relacionadas con las distribuciones estacionales de las especies MNN (Tyrannus tyrannus) y MAN (T. savana). Las
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ubicaciones de ambas especies estuvieron positivamente correlacionadas con una alta precipitación durante sus
estaciones no reproductivas. Las ubicaciones de T. tyrannus estuvieron positivamente correlacionadas con la NDVI y la
temperatura durante la estación reproductiva y con las migraciones pre- and post-reproductivas. Las ubicaciones de T.
savana estuvieron positivamente correlacionadas con la temperatura y la precipitación durante ambas migraciones,
pero solo con la temperatura durante la estación reproductiva. El valor de extender las aplicaciones de los datos de
geolocalización, como en los MDEs, queda en evidencia por el hallazgo de que la precipitación fue un predictor tan
importante de las distribuciones no reproductivas de ambos tipos de migración, que no está claro cómo el cambio
climático global afectará los ciclos húmedos-secos en los trópicos.

Palabras clave: clima, estacionalidad, geo-localizador, Maxent, migración, modelo de distribución de especies

INTRODUCTION

Animals are thought to have evolved seasonal annual

migrations to track spatiotemporal variation in resources

that are ephemerally abundant in a predictable way (Dingle

and Drake 2007, Milner-Gulland et al. 2011). The timing of

seasonal migrations presumably matches optimum re-

source availability across a landscape to maximize fitness

(Nathan et al. 2008, La Sorte et al. 2014), but studies

quantifying resource optimality are rare (Bridge et al.

2016). We therefore lack a thorough understanding of the

degree to which seasonal movements of animals are driven

by the phenology (timing and sequence) of resource

availability across space (Renfrew et al. 2013), and the

degree of temporal flexibility in migratory movements with

respect to seasonal resource abundance (Jenni and Kéry

2003). However, recent advances in animal tracking

technology, including stable hydrogen isotopes (Studds et

al. 2012), miniature light-level geolocators (Stutchbury et

al. 2009, Bridge et al. 2011), and satellite transmitters

(Robinson et al. 2010), offer an unprecedented ability to

explore how individual animals track seasonal changes

(e.g., Renfrew et al. 2013). This has been an especially fast-

growing area of research in the study of bird migration,

with evidence supporting major roles of seasonality in

temperature (Schmaljohann et al. 2012), rainfall (Boyle

2008), and primary productivity (Renfrew et al. 2013,

Bridge et al. 2016) in driving seasonal movements of

individuals. Although highly correlated, the 3 main aspects

of seasonality that have been identified as important

predictors of the seasonal abundance of food used by

migratory animals are the periodicity and amplitude of

changes in temperature, rainfall, and primary productivity.

The general role of seasonality in driving the migrations

of populations that breed, migrate, and spend the

nonbreeding period across a variety of geographic and

climatic contexts has yet to be evaluated; consequently, we

lack a unified paradigm describing the ecological drivers of

bird migration (Bairlein and Coppack 2006, Hedenström

2008, Nathan et al. 2008, Watts et al. 2018). Seasonal

fluctuations in temperature covary with day length, which

changes predictably throughout the year at any given

latitude, with the seasonal amplitude of changes in

temperature increasing with latitude. Rainfall in terrestrial

biomes is less predictable than temperature because, at a

local scale, patterns of rainfall are driven by temperature

(Santer et al. 2007, Willett et al. 2007), geographical

location and topography (Ineson and Scaife 2009, Kenyon

and Hegerl 2010), and the abundance of greenhouse gases

(Allen and Ingram 2002, Lambert and Allen 2009, Polson

et al. 2013). The seasonality of primary productivity is even

less predictable, because it can be affected not only by

topography or ecoregion (Forzieri et al. 2014), but also by

stochastic, abiotic factors such as droughts (e.g., Hoerling

et al. 2014), El Niño–La Niña cycles (Goetz et al. 2000,

Abdi et al. 2016) and by complex species-specific biotic

factors such as symbioses with pollinators (Mosquin 1971)

or the synchrony of fruiting (van Schaik et al. 1993). Thus,

if seasonality is important in the evolution of optimal

annual routines by migratory birds, it is likely that birds

track aspects of the environment that vary in the most

reliable ways for a given location and time of year.

The 2 largest bird migration systems in the New World,

in terms of numbers of species, are Nearctic–Neotropical

and Neotropical austral bird migration systems (Faaborg et

al. 2010). Nearctic–Neotropical migrants (hereafter,

NNMs) breed in North America and migrate south to

spend the nonbreeding period in the Neotropics (Faaborg

et al. 2010). Conversely, Neotropical austral migrants

(hereafter, NAMs) breed in southern South America and

migrate north to spend the nonbreeding period closer to

the equator, thus spending their entire annual cycle within

South America (Chesser 1994, Cueto and Jahn 2008).

For several reasons, birds in these 2 migration systems

may experience unique climates. Broadly, as the oceans

encompass a greater proportion of the Southern compared

with the Northern Hemisphere, terrestrial ecosystems in

the south may be better buffered against temperature

extremes and therefore may experience an overall milder

climate than northern temperate terrestrial systems (Hayes

et al. 1994, Yom-Tov et al. 1994, Paruelo et al. 1995, Dingle

2008). Thus, the amplitude and periodicity of temperature

as a reliable seasonal cue is likely to be smaller in South vs.

North America. To add to this, food resources (i.e.

arthropods) important for insectivorous migratory birds

in North America emerge with seasonal changes in

temperature (Both et al. 2006, Mazerolle and Hobson

2007, Tulp and Schekkerman 2008), whereas food
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resources for such birds in South America are likely to be

driven by seasonality in rainfall (Pinheiro et al. 2002, Jahn

et al. 2010b, Mendoza et al. 2017).

While there is some research linking seasonal locations

of NNMs with primary productivity (e.g., geese species

track spring growth of plants during prebreeding migra-

tion: Drent et al. 2007; Bobolinks [Dolichonyx oryzivorus]

track primary productivity during the nonbreeding period:

Renfrew et al. 2013; Painted Buntings [Passerina ciris]

optimize whole annum exposure to primary productivity:

Bridge et al. 2016), there have been no assessments of

which aspects of the environment NAMs may be tracking

(but see Jahn et al. 2010a, Guaraldo et al. 2016). Although

climatic differences experienced by birds in these 2

migration systems suggest that different environmental

selective pressures may shape their life history strategies,

we have yet to test how birds in different New World

migratory systems track seasonally variable cues or

resources throughout their annual cycles.

Here, we provide the first assessment of the role of

extrinsic factors (e.g., seasonality experienced by a

migratory bird) in explaining the locations of individual

NNMs vs. NAMs throughout their annual cycles (i.e.

annual life history stages). We used species distribution

models (SDMs) to test whether aspects of seasonality

(temperature, rainfall, and/or primary productivity mea-

sured using the Normalized Difference Vegetation Index

[NDVI]) best explained the locations of an NNM, the
Eastern Kingbird (Tyrannus tyrannus), and an NAM, the

Fork-tailed Flycatcher (T. savana), during 4 major life

history stages: breeding, postbreeding migration, non-

breeding, and prebreeding migration. Eastern Kingbirds

breed in North America and spend the nonbreeding period

in South America (Murphy and Pyle 2018), whereas the

nominate subspecies of Fork-tailed Flycatcher resides

primarily in South America throughout the annual cycle,

breeding from central South America to central Argentina

and spending the nonbreeding period in northern South

America (Jahn et al. 2013b). Both species occupy savanna

habitat, perch in the open, are similar in size, and forage by

aerial hawking and upward sallies in pursuit of their

primary prey, flying insects (Fitzpatrick et al. 2004). Both

are also known to forage on fruit during the nonbreeding

period (Zimmer 1938, Morton 1971, Jahn and Tuero

2013).

Environmental variables that are correlated with species

occupancy are expected to be reflected in species’ realized

niches (Elith et al. 2006), and comparisons of SDMs have

been used to better understand the ecological basis of

speciation or barriers to hybridization in closely related

species (Cicero 2004, Graham et al. 2004). We compared

SDMs for Eastern Kingbirds and Fork-tailed Flycatchers to

better understand the ecological underpinnings of migra-

tion strategies within North vs. South American breeding

birds. We predicted that primary productivity would be the

best estimator of locations of Eastern Kingbirds during the

summer breeding months, but that rainfall would best

estimate locations during their nonbreeding season in

South America, since food resources for birds are likely

driven by seasonality in rainfall there (Pinheiro et al. 2002,

Jahn et al. 2010b, Mendoza et al. 2017). Because

temperature has been strongly linked with the timing of

pre- and post-breeding migration in migrant birds that

breed in the Northern Hemisphere (Jenni and Kéry 2003),

we predicted that temperature would be the best predictor

of locations of Eastern Kingbirds during both migrations.

We predicted that rainfall would be the best estimator of

locations of Fork-tailed Flycatchers during all 4 annual life

history stages because they reside in South America

throughout their annual cycle (Jahn et al. 2013b).

METHODS

Capture and Deployment of Light-level Geolocators
We captured Eastern Kingbirds and Fork-tailed Flycatch-

ers during their respective breeding seasons (Eastern

Kingbirds: May to July in Nebraska, Oklahoma, and

Oregon, USA [Murphy and Pyle 2018]; Fork-tailed

Flycatchers: September to December in Brazil [Marini et
al. 2009] and October to January in Argentina [Jahn et al.

2014]). Three Eastern Kingbirds were tracked in 2009–

2010, 6 in 2010–2011 (raw geolocator data from these

birds from Nebraska has also been used by Jahn et al.

2013a) and 3 in 2011–2012 (raw geolocator data from 1 of

these individuals has also been used by Jahn et al. 2013a;

Table 1). One Eastern Kingbird was tracked across 2 yr;

thus, the 12 geolocator tracks that we analyzed came from

11 individual Eastern Kingbirds. Two Fork-tailed Flycatch-

ers were tracked in 2009–2010, 9 in 2010–2011 (raw

geolocator data from 6 of these individuals has also been

used by Jahn et al. 2013b), and 8 in 2011–2012. Three

Fork-tailed Flycatchers were tracked across 2 yr, thus the

19 geolocator tracks that we analyzed came from 16

individual Fork-tailed Flycatchers (Table 1).

Light-level geolocators were attached to birds using a

backpack-style harness (Rappole and Tipton 1991) made of

spun Kevlar filament (500 decitex; Saunders Thread,

Gastonia, North Carolina, USA; Jahn et al. 2013a). The

mass of each unit with the harness was ~1.2 g and ,5% of

the body mass of each individual (see Table 1 for a

comprehensive list of the geolocator models deployed).

Analysis of Geolocator Data
We analyzed geolocator data to determine the dates and

locations of stops made by each individual during the

annual cycle. For every individual, we used the recorded

light intensity from all geolocators at the specific

deployment site to calibrate geolocator data by calculating
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sun zenith angles and measuring error. As geolocators

were deployed on individuals at their nest sites, while they

were incubating eggs or caring for nestlings, we assumed

that individuals remained at the deployment site for at

least 10 days after capture, and used the latitude and

longitude of these sites to generate a calibration curve of

light intensity as a function of zenith angles using

astronomical functions within the R package SGAT

(Wotherspoon et al. 2013). From data recorded at the

deployment sites, we estimated geolocation error in

longitude to be an average (6 SE) of 52.1 6 25.4 km

and error in latitude to be an average of 85.1 6 57.4 km for

Eastern Kingbirds. For Fork-tailed Flycatchers, the average

(6 SE) error in longitude was 76.5 6 14.77 km, and the

average error in latitude was 101.3 6 28.2 km. The derived

zenith angle varied between individuals and ranged from

�7.16 to 0.21. Daily positions for all geolocator types were

estimated using the GeoLight package (Lisovski and Hahn

2012) in program R 3.4.3 (R Core Team 2017). Since the

variation in elevation angle of the sun at the breeding

grounds is low, and these species occupy open habitats

throughout their annual cycle, we did not expect location

accuracy to change throughout the year. We omitted

location estimates within 2 weeks (14 days) of the fall and

spring equinoxes for all geolocators (see Renfrew et al.

2013), and applied a local regression (loess) filter to

remove outlier location data from all geolocation tracks

(Cormier et al. 2013). Since open-habitat species produce

extremely ‘clean’ datasets for identifying sunrise and sunset

times compared with avian species that occupy other

habitat types, aberrant location estimates were easily

identified and deleted (Phillips et al. 2004). R code and

further explanation of light-level data analysis are given in

Supplemental Material Appendix A.

Environmental Datasets
We obtained daily temperature and precipitation data for

the Americas from July 2009 through October 2012 from

the National Centers for Environmental Prediction

(NCEP) database (Kalnay et al. 1996). We obtained

Normalized Difference Vegetation Index (NDVI) data

from NASA’s MODIS dataset (https://neo.sci.gsfc.nasa.

gov/view.php?datasetId¼MOD_NDVI_16&year¼2009).
NDVI is a satellite-derived ‘greenness’ index that is used as

a proxy for primary productivity or food availability

(reviewed by Pettorelli et al. 2005) and has been used to

assess movement decisions of birds in South America, the

Middle East, and northern Europe (Tøttrup et al. 2008,

Renfrew et al. 2013).

Prior to analysis, we calibrated the time period and

spatial resolution of these 3 environmental datasets. NDVI

is measured remotely via satellite and captures a single file

with global reflectance data every 16 days at a spatial

resolution of 1.08 3 1.08. Temperature and precipitation

TABLE 1. Geolocators recovered from individual Tyrannus species at different study sites, from which stopped locations were used
to inform species distribution models (SDMs). Distributions of stopped locations were used to test which environmental factors were
correlated with the distributions of a Nearctic–Neotropical migrant (NNM; the Eastern Kingbird), which bred in North America and
migrated south to spend the nonbreeding period in the Neotropics, and a Neotropical austral migrant (NAM; the Fork-tailed
Flycatcher), which bred in southern South America and migrated north during the nonbreeding period, spending its entire life cycle
in South America. The types of geolocators deployed included: BAS (Mk 20), weighing 0.9 g and manufactured by the British
Antarctic Survey (Wareham, Dorset, UK); BAS (Mk 10S), 1.2 g by the British Antarctic Survey; BAS (Mk 12S), 0.9 g by the British
Antarctic Survey; and Eli Bridge, weighing 0.7 g and developed by researchers at the University of Oklahoma (Norman, Oklahoma,
USA) and Cornell University (Ithaca, New York, USA).

Type of
migrant Species Study site (latitude, longitude)

Types of units
deployed

Dates geolocators
were deployed (sample size)

NNM Eastern Kingbird Oklahoma, USA (34.68, �98.48) BAS (Mk 20) June 2011 to May 2012 (2)
Nebraska, USA (40.88, �98.48) BAS (Mk 20) July 2010 to June 2011 (5), July 2010 to

July 2012 (1)
Oregon, USA (42.98, �118.88) BAS (Mk 20) July 2009 to August 2010 (1), July 2009 to

July 2010 (2)
(Total ¼ 11)

NAM Fork-tailed Flycatcher Brasilia, Brazil (�15.58, �47.68) Eli Bridge November 2010 to November 2012 (1)
Buenos Aires, Argentina

(�34.18, �57.48)
BAS (Mk 10S

and Mk 12S),
Eli Bridge

December 2009 to December 2010 (2),
February 2010 to December 2011 (2),
December 2010 to December 2011 (1),
December 2010 to December 2012 (2),
December 2010 to November 2011 (2),
January 2011 to November 2011 (1),
October 2011 to December 2012 (1),
November 2011 to December 2012 (2),
December 2011 to December 2012 (1),
December 2011 to November 2012 (1)

(Total ¼ 16)
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rasters obtained from the NCEP database have a 2.58 32.58

spatial resolution. To combine these datasets for our

analyses, the daily high temperature and cumulative

rainfall for each day were calculated and then averaged

for each 16-day period defined by the NDVI dataset.

Numerical control files were converted from the NCEP

database to GeoTiff files using NASA SeaDas software

(version 7.3.2) and then stacked, and rasters were made of

temperature and rainfall data using the rgdal (Bivand et al.

2016) and raster (Hijmans 2016) packages in R 3.4.3 (R

Core Team 2017; Supplemental Material Appendix B).

Using the projectRaster function in the raster library in R,

the spatial extent of NDVI rasters was set to meet the pixel

size of temperature and rainfall rasters (Supplemental

Material Appendix B).

Statistical Analyses and Spatial Models
We built SDMs using 3 environmental variables (temper-

ature, precipitation, and NDVI) for both bird species for

each 16-day time period during the time that geolocators

collected data. This totaled 59 SDMs for Eastern Kingbirds

(from July 12, 2009, to May 9, 2012, was 1,033 days, which,

after subtracting equinox periods and dividing by 16-day

time periods, left 59 time periods for SDMs), and 60 SDMs

for Fork-tailed Flycatchers (from December 19, 2009, to

November 1, 2012, was 1,049 days, which, after subtracting

equinox periods and dividing by 16-day time periods, left

60 time periods for SDMs). To test whether the

environmental variables estimated the distributions of
the locations of migrants throughout the annual cycle, we

used a maximum entropy (MaxEnt) modeling approach.

Maxent software uses presence-only data to build ecolog-

ical niche models to quantify the probability of the

presence of a species in a region (Phillips et al. 2006,

Phillips and Dudı́k 2008). We assigned each 16-day time

period to the most appropriate life history stage (i.e.

breeding, postbreeding migration, nonbreeding, and pre-

breeding migration) following species accounts for each

species (Pyle 1997, Marini et al. 2009, Jahn and Tuero

2013, Jahn et al. 2014). We used Maxent to estimate

species distribution models (SDMs) during each annual life

history stage from 2009 to 2012.

To assess the performance of the 3 environmental

variables in describing the distributions of both species, we

generated Maxent models by training each model with

location data from individuals fitted with geolocators. To

do this, we used the geolocator data as a presence-only

dataset, and identified single stationary locations for every

individual during each time period. If multiple locations

were estimated for any individual during a time period, we

used the location where individuals occupied the largest

number of days during that time period in our model. We

then tested the SDMs against a second independent

presence-only dataset gathered from eBird (https://ebird.

org/). Date and location data were downloaded from the

eBird website for Eastern Kingbirds and Fork-tailed

Flycatchers from July, 2009, through October, 2012.

During each time period for Eastern Kingbirds (59) and

Fork-tailed Flycatchers (60), we randomly selected 10

locations. We selected 10 locations per time period from

eBird because this was a standard number of sightings that

could be replicated across each time period for both

species to create a balanced test dataset. For Eastern

Kingbirds, the fewest records occurred during the

nonbreeding seasons (October–March), and we allowed

eBird records to be drawn from anywhere in the Americas.

Fork-tailed Flycatchers had the fewest eBird records

during the months of May and June across all years. As

Fork-tailed Flycatchers have multiple nonmigratory sub-

species that are not distinguished in the eBird dataset, we

placed restrictions on the selection of eBird records to

reduce error in our tests of SDMs built from geolocator

data of the migratory subspecies. We restricted eBird

records for Fork-tailed Flycatchers to South America for
all seasons, and limited records to south of the Amazon

Basin during the breeding season, and north of the

Amazon Basin during the nonbreeding season.

We generated SDMs with the training (geolocator) and
test (eBird) data using Maxent 3.3.3k (http://

biodiversityinformatics.amnh.org/open_source/maxent/).

We trained each SDM using geolocator data against a

random set of 10,000 background points constrained to be

located within the potential range of each taxa (the entirety

of the Americas for Eastern Kingbirds, and solely South

America for the subspecies of Fork-tailed Flycatcher that

we studied). We attempted to avoid overfitting by drawing

geolocator data from multiple breeding populations

(limiting sampling bias), training SDMs using regulariza-

tion via the default settings of the Maxent program

(Phillips and Dudı́k 2008), using a second independent test

dataset (eBird data), and using a geographic area

appropriate to each species. However, our approach to

assessing the role of seasonality in predicting locations of

long-distance migrants is expected to be overfitted due to

the large number of background points (Phillips and

Dudı́k 2008) and large spatial extent that, by design, was

not meant to impose spatial limitations from biotic

interactions or limits to dispersal (Anderson and Raza

2010). Models were considered to have performed well if

AUC (area under the curve) values were above the 0.5

threshold, indicating a strong discrimination between the

environment (e.g., temperature, precipitation, NDVI)

where individuals were present vs. other potential

locations (Elith et al. 2011). Significant drops in AUC

values from training to test datasets would indicate model

overfitting, and this was monitored.

The importance of environmental variables to deter-

mining distributions during each time period was assessed
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using percent contribution and permutation importance

using the Maxent software. For each model, the program

identified the proportional contribution of each environ-

mental layer by detecting changes in model gain by

modifying coefficients in each layer (Phillips et al. 2006).

The final percent contributions were assigned according to

changes in model gain when each layer was modified.

Permutation importance is a second assessment of

importance calculated in Maxent by randomly permuting

the values within each environmental dataset of both the

training and background points. Each model was reeval-

uated based on the permuted environmental data and the

change in AUC was calculated. Large changes in AUC

indicated that the variable had high importance in the

SDM. Permutation analyses distinguish the influence of

environmental variables from one another, allowing for the

inclusion of relevant variables regardless of correlation

between them. However, all environmental variables were

checked for multicollinearity, and correlated pairs (r � 0.7)

were identified using ENMTools (www.enmtools.com;

Fielding and Haworth 1995, Warren et al. 2008;

Supplemental Material Appendix C).

RESULTS

Maxent models for the NNM (Eastern Kingbird) performed

well in 52 of the 59 time periods (Figure 1; Supplemental

Material Appendix D). Most of the contributing models (i.e.

FIGURE 1. Environmental variables experienced by Eastern Kingbirds fitted with geolocators (mean 6 SE). NDVI is a satellite-derived
‘greenness’ index that is used as a proxy for primary productivity. The environmental variables that were significant for defining the
seasonal ranges of individual Eastern Kingbirds fitted with geolocators are identified by colored bars along the x-axis; colors match
the measurement values displayed in the figure. White bars along the x-axis indicate that none of the environmental variables
predicted bird locations, and gray bars indicate that not enough location data were available to build species distribution models
(SDMs). The letters along the x-axis indicate seasons as follows: B ¼ ‘breeding,’ post ¼ ‘postbreeding migration,’ non-B ¼
‘nonbreeding,’ and pre ¼ ‘prebreeding migration.’
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those with AUC values .0.50) had AUC values above 0.850

(range: 0.606–0.998; test AUC values never dropped more

than 0.10 below training AUC values), with the lowest

values mainly found during prebreeding migration

(Supplemental Material Appendix D). Positions of Eastern

Kingbirds were positively correlated with NDVI (10/17 time

periods) or temperature (3/17 time periods) during the

breeding season (Figures 1 and 2, Supplemental Material

Appendix D). The influence of NDVI in Maxent models was

highly variable and irregular, compared with that of

temperature and precipitation (Supplemental Material

Figure S5A), and thus was omitted from Figure 1. Positions

of Eastern Kingbirds were primarily correlated with high

rainfall during the nonbreeding season (26/30 time periods)

in South America, except when they were positively

correlated with NDVI (3/10 time periods during the

2010–2011 nonbreeding season; Figures 1 and 2,

Supplemental Material Appendix D). Eastern Kingbird

positions were positively correlated with either temperature

(6/9 time periods) or NDVI (1/9 time periods) during

prebreeding migration, when enough data were available

(Figures 1 and 2, Supplemental Material Appendix D). Their

positions were positively correlated with NDVI (2/3 time

periods) or temperature (1/3 time periods) during post-

breeding migration (Figures 1 and 2, Supplemental Material

Appendix D).

Maxent models for the NAM (Fork-tailed Flycatcher)

performed well in 49 of 60 time periods (Figure 3,

Supplemental Material Appendix D). Most of the

contributing models (i.e. those with AUC values .0.50)

had AUC values above 0.850 (range: 0.717–0.999; test

AUC values did not drop more than 0.15 below training

AUC values), with the lowest values mainly found during

the breeding season (Supplemental Material Appendix

D). When considering significant contributions from

environmental variables during time periods with high

FIGURE 2. An example of seasonal locations of Eastern Kingbirds (n ¼ 6) on the environmental landscape during 2010–2011.
Locations of individual birds are represented by red dots. Time periods displayed are: the breeding season (July 12–July 28, 2010);
postbreeding migration (August 29–September 14, 2010); the nonbreeding season (February 2–February 18, 2011); and prebreeding
migration (April 23–May 9, 2011). See Figure 1 for NDVI definition.
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AUC values, we found that Fork-tailed Flycatcher

positions were positively correlated with temperature

during the breeding season (12/18 time periods), except

in the 2011–2012 breeding season, when locations were

positively correlated with NDVI (2/7 time periods;

Figures 3 and 4, Supplemental Material Appendix D).

The influence of NDVI in Maxent models for Fork-tailed

Flycatchers was highly variable and irregular, compared

with that of temperature and precipitation (Supplemental

Material Figure S5B), and thus was omitted from Figure

3. Fork-tailed Flycatcher positions were positively corre-

lated with high rainfall during each nonbreeding period

(during 23/27 time periods; Figures 3 and 4,

Supplemental Material Appendix D). The distributions

of Fork-tailed Flycatchers during both migrations seemed

to bookend the environmental variable with which it was

correlated during either the breeding or nonbreeding

period (Figure 3). During postbreeding migration, their

positions were positively correlated with temperature

during 1/6 time periods and with precipitation during 5/6

time periods (Figure 3, Supplemental Material Appendix

D). During prebreeding migration, their positions were

positively correlated with temperature during 3/6 time

periods and with precipitation during 3/6 time periods

(Figure 3, Supplemental Material Appendix 4).

We seldom found the positions of either species to be

highly correlated with more than one variable during any

time period (Supplemental Material Appendix D).

FIGURE 3. Environmental variables experienced by Fork-tailed Flycatchers fitted with geolocators (mean 6 SE). The
environmental variables that were significant for defining the seasonal ranges of individual Fork-tailed Flycatchers fitted with
geolocators are identified by colored bars along the x-axis; colors match the measurement values displayed in the figure. White
bars along the x-axis indicate that none of the environmental variables predicted bird locations, and gray bars indicate that not
enough location data were available to build species distribution models (SDMs). The letters along the x-axis indicate seasons as
follows: B¼ ‘breeding,’ post¼ ‘postbreeding migration,’ non-B¼ ‘nonbreeding,’ and pre¼ ‘prebreeding migration.’ See Figure 1
for NDVI definition.
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DISCUSSION

We found that the locations of a Nearctic-Neotropical

migrant were correlated with a variety of season-specific

climatic variables, while those of a Neotropical austral

migrant were primarily correlated with temperature during

the breeding season and with high rainfall during the

nonbreeding season. Despite spatiotemporal differences

between these 2 life-history strategies, we also found

similarities, such as the nonbreeding locations of both

species being correlated with high rainfall.

Although widely separated by space and time of year, the

positions of both Eastern Kingbirds and Fork-tailed

Flycatchers were positively correlated with temperature

while on the breeding grounds. However, Eastern Kingbird

locations were positively correlated more often with NDVI

than with temperature while on the breeding grounds,

signaling strong selection for matching the timing of

reproduction with seasonally abundant resources in the

Northern Hemisphere. Our finding that the positions of

Eastern Kingbirds were positively correlated with NDVI

during prebreeding migration was weak (only 1/9 time

periods) and was likely an artifact of our approach, because

individuals could have been moving large distances not

captured by the 16-day time period. While temperature is

thought to be positively correlated with the spring onset of

insect activity, increased NDVI as well as rates of NDVI in

spring may also be reasonable proxies indicating seasonal

resource abundance (Hahn et al. 2016). In the Neotropics,

native arthropods are typically abundant during the wet

season, but some research suggests that certain arthropod

groups do not decline during the tropical dry season

(Pinheiro et al. 2002). New research is demonstrating that

some herbivorous insects, including some exotic species

(Coutinho-Silva et al. 2017), are in greater abundance

during the dry season (Silva et al. 2017), when Fork-tailed

Flycatchers are breeding. That the positions of Fork-tailed

Flycatchers were predominantly correlated with tempera-

ture while breeding, and were neither positively nor

negatively correlated with rainfall, underscores our poor

FIGURE 4. An example of seasonal locations of Fork-tailed Flycatchers (n¼ 7) on the environmental landscape during 2010–2011.
Locations of individual birds are represented by red dots. Time periods displayed are: the breeding season (December 3–December
19, 2010); postbreeding migration (March 22–April 7, 2011); the nonbreeding season (July 12–July 28, 2011); and prebreeding
migration (September 30–October 16, 2011). See Figure 1 for NDVI definition.
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understanding of migratory strategies in the understudied

Neotropical austral migrant system (Jahn et al. 2004), and

demonstrates that a more complex relationship with

seasonality and resource availability may exist (e.g., Bridge

et al. 2016).

Our results support the idea that, for closely related

migratory species or those of the same dietary guild,

tracking seasonally abundant resources throughout the

year may be more season- and location-specific, rather

than species-specific. As predicted, the positions of both

species were positively correlated with rainfall during their

nonbreeding seasons in South America, where tempera-

ture is less variable. Eastern Kingbirds are known to be

seasonally frugivorous while on the nonbreeding grounds

in South America during the wet season months of

October through February (Zimmer 1938, Morton 1971,

Jahn et al. 2013a), further suggesting a reliance on

seasonally abundant resources throughout the annual

cycle.

In addition to occupancy being positively correlated

with temperature during parts of the breeding seasons, the

positions of both species were also correlated with

temperature during at least some parts of their pre- and

post-breeding migrations, perhaps supporting the idea that

migrants may be able to adjust their migrations in

response to global climate change (Dunn and Winkler

1999, Hüppop and Hüppop 2003, Marra et al. 2005).

However, one study of an NNM (Wood Thrush [Hyloci-
chla mustelina]) that tracked individuals over multiple

years showed flexibility in route, but not in timing, of

migration (Stanley et al. 2012). Our results during

migration lack such detail, as we used the longest stops

during each 16-day period defined by the NDVI dataset.

Thus, assessments of the timing of migration with respect

to changes in climate are more appropriate using

environmental data gathered at finer temporal scales than

presented here.

Extending the application of fine-scale and full annual

cycle tracking data, such as geolocator data or satellite

data, to SDMs can improve our understanding of the

temporal dynamics of climatic niches for migratory birds

(Eyres et al. 2017, Thorup et al. 2017, Williams et al. 2017).

Comparing the results of such applications with primary

productivity data at smaller temporal scales (such as

LiDAR data) may reveal more nuanced aspects of the

timing of movements and stopovers during migration and

allow more detailed tests of the flexibility of migrants in

their responses to global climate change. This is especially

relevant when considering our finding that precipitation

was a significant predictor of occupancy during the

nonbreeding season in South America. It is important to

understand how migrants track wet–dry cycles during the

nonbreeding season because, while there is agreement

amongst climate models for projected changes in temper-

ature, it remains unclear how changes in the amplitude or

distribution of precipitation will affect resource availability

(Tulp and Schekkerman 2008). While our study united full

annual cycle tracking data with physical environmental

variables characteristic in defining seasonality, we did not

take into account other factors that contribute to a species’

realized niche (such as competition or predation), or its

fundamental niche (such as specific habitat requirements).

Broadening the scope of SDMs to include biotic interac-

tions could improve the impact of SDMs on conservation

by distinguishing the realized from the fundamental niche

(Phillips and Dudı́k 2008). This is of particular importance

for species that practice wintering itinerancy, and for

which we have little information on the drivers of

nonbreeding movements (Thorup et al. 2017).

Models of optimal annual routines for migratory birds

may be improved for some species with the inclusion of

seasonal dynamics in climatic niches. If seasonality in

arthropod abundance is driven in large part by the highly

variable wet–dry cycle in South America (Wolda 1978,

Jahn et al. 2010b, Morán-Tejeda et al. 2016, Osman and

Vera 2017), migratory species that spend all or part of the

year in South America may have evolved flexibility in the

timing of their nonbreeding movements. Our results
showed that the positions of Fork-tailed Flycatchers were

positively correlated with rainfall throughout much of their

annual cycle, including during both pre- and post-breeding

migration. However, long-term studies in South America,

and in particular in the Neotropical austral migration

system, are necessary to test whether the timing of

migration in NAMs matches that of variable wet–dry

cycles, as has been done to test whether migratory birds

breeding at northern temperate latitudes time their

migration with increasing temperatures (e.g., Jenni and

Kéry 2003). When considering species that may have

evolved flexibility in their annual behavior, and that may

have switched climatic niches intra-annually, full-cycle

models testing optimization of resource acquisition may be

more complicated than optimizing a single environmental

variable (such as primary productivity; e.g., Painted

Buntings: Bridge et al. 2016; Common Cuckoos (Cuculus

canorus), Red-backed Shrikes (Lanius collurio), and

Thrush Nightingales (Luscinia luscinia): Thorup et al.

2017).

Our findings support the idea that aspects of seasonality

important to migrants are context-dependent and vary

across continents and hemispheres. An important step

moving forward will be to test the flexibility of routines of

migratory birds in different migratory systems to predict

and plan for differing responses by migratory bird species

to global climate change. Developing seasonal SDMs for a

variety of bird species tracked with geolocators and other

tracking technologies will allow greater precision in our

understanding of the movements of birds that migrate in
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different regions in relation to different seasonal cues or

seasonal abundance of resources. In turn, this will better

equip us to test whether and how the seasonal annual

cycles of birds in different migratory systems will be

affected under future global climate change scenarios (see

Yesson and Culham 2006, Kharouba et al. 2009, Yates et al.

2010).
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