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Comprehensive Analysis of Salamander Hybridization Suggests a Consistent

Relationship between Genetic Distance and Reproductive Isolation across

Tetrapods

Scott Lucas Melander1 and Rachel Lockridge Mueller1

Hybridization between populations along the path to complete reproductive isolation can provide snapshots of
speciation in action. Here, we present a comprehensive list of salamander hybrids and estimate genetic distances
between the parental hybridizing species using one mitochondrial and one nuclear gene (MT-CYB and RAG1).
Salamanders are outliers among tetrapod vertebrates in having low metabolic rates and highly variable sex
chromosomes. Both of these features might be expected to impact speciation; mismatches between the mitochondrial
and nuclear genomes that encode the proteins for oxidative metabolism, as well as mismatches in heteromorphic sex
chromosomes, can lead to reproductive isolation. We compared the genetic distances between hybridizing parental
species across four main tetrapod groups that differ in metabolic rates and sex chromosome diversity: salamanders,
lizards, mammals, and birds. Our results reveal no significant differences, suggesting that variation in these traits
across vertebrates does not translate into predictable patterns of genetic divergence and incompatible loci in hybrids.

S
PECIES formation is typically a temporally extended
process, occurring over countless generations as one
population-level lineage diverges into two indepen-

dent population-level lineages (de Queiroz, 1998). Because of
the long timescales, studying this process is challenging;
however, diverging lineages that retain the ability to
reproduce can provide snapshots of speciation in action
(Harrison and Larson, 2016; Soltani et al., 2017). Classic
examples include ring species such as Ensatina eschscholtzii,
where different steps of speciation can be examined in a
single taxon by looking at how the populations distributed
around the geographic ‘‘ring’’ interbreed or hybridize (Pereira
and Wake, 2009; Devitt et al., 2011). Specifically, hybrids
provide an opportunity to identify the key genetic factors
that become reproductive barriers when divergent genomes
mix (Arnold, 1997; Toro et al., 2002; Harrison and Larson,
2016; Qvarnström et al., 2016). Typically, populations that
come into contact and interbreed after isolation will have
alleles interact in new, untested ways (Barton and Hewitt,
1985). If the admixture of alleles is intrinsically harmful,
such as the hybrid being sterile, these negative interactions
are called Dobzhansky–Muller or Bateson–Dobzhansky–
Muller incompatibilities (BDMIs) and are a source of
reproductive isolation (Bateson, 1909; Dobzhansky, 1937;
Muller, 1942; Orr, 1996).

One special case of BDMIs is when the mitochondria and
the nucleus are mismatched after hybridization—i.e., mito-
nuclear discordance (Ellison and Burton, 2008; Sloan et al.,
2017; Hill et al., 2019). When the nuclear genome includes
contributions from two species, but the mitochondrial
genome comes from only one of the two, the gene products
encoded by the two organelles cannot always functionally
interact, causing reduced fitness and contributing to repro-
ductive isolation. More specifically, this reduced fitness can be
reflected in the metabolic costs of being a hybrid, which
include increased respiration rates, increased levels of reactive
oxygen species (ROS), and increased metabolic rate (Olson et
al., 2010; Gvoždı́k, 2012; Barreto and Burton, 2013; Borowiec

et al., 2016; McFarlane et al., 2016; Prokić et al., 2018). We
hypothesize that if an organism has a low metabolic rate to
begin with, this change in OXPHOS functionality might have
a smaller effect on overall hybrid fitness. This, in turn, could
allow hybridization between species with more severely
mismatched mitochondrial and nuclear genomes. Tetrapods
are a good model system in which to test this hypothesis
because of the wide range of metabolic rates that exists in the
clade (Pough, 1980; White el al., 2006; Anderson and Gillooly,
2018). Literature reviews summarizing hybrids in birds,
mammals, and lizards have been published previously
(Fitzpatrick, 2004; Jančúchová-Lásková et al., 2015); birds
have the highest metabolic rates, followed by mammals, and
then lizards. Salamanders (order Caudata) are an important
clade to incorporate into a comparative analysis of tetrapods
because they have the lowest metabolic rates (Pough, 1980;
Glatten et al., 1992), and there are many reported cases of
salamander hybrids. With their low metabolic requirements,
we predict that salamander hybrids can tolerate greater levels
of genetic divergence—a proxy for mitonuclear mismatch—
between parental species before complete reproductive isola-
tion occurs.

Sex chromosomes are also important during speciation and
the emergence of reproductive isolation or hybrid incompat-
ibility (Lima, 2014) because of Haldane’s rule, where the
heterogametic sex is more likely to be infertile by a variety of
potential mechanisms, or the related large X/Z effect, where a
disproportionate share of hybrid incompatibilities is found
on either the X or Z chromosome (Presgraves, 2008;
Lavretsky et al., 2015; Janoušek et al., 2019). In hybrid zones,
mutations in sex chromosomes have been shown to limit
introgression (Cortés-Ortiz et al., 2019) or even cause
complete reproductive isolation between lineages (Johnson
and Lachance, 2012; Hooper et al., 2019). Compared to other
tetrapod clades, salamanders have variable genetic sex-
determining mechanisms with either homomorphic sex
chromosomes or heteromorphic sex chromosomes with
either ZW or XY systems (Eggert, 2004). ZW and XY systems
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Table 1. Hybridization in salamanders.

Parental species

ResourcesSpecies 1

Sex
chromosome

type Species 2

Sex
chromosome

type

Ambystomatidae
Ambystoma dumerilii Ambystoma mexicanum Brandon, 1977
Ambystoma dumerilii Ambystoma rivulare Brandon, 1977
Ambystoma macrodactylum Ambystoma macrodactylum Lee-Yaw et al., 2014
North Central Rocky Mountains
Ambystoma macrodactylum ZW* Ambystoma mexicanum ZW1.2.3 Brandon, 1977
Ambystoma maculatum Ambystoma maculatum Johnson et al., 2015
Eastern Western
Ambystoma mexicanum ZW1.2.3 Ambystoma tigrinum ZW1.2.3 Woodcock et al., 2017
Ambystoma mexicanum ZW1.2.3 Ambystoma opacum ZW* Brandon, 1977
Ambystoma talpoideum Ambystoma texanum Brandon, 1977
Ambystoma texanum ZW* Ambystoma tigrinum ZW1.2.3 Brandon, 1977
Ambystoma tigrinum californiense ZW1.2.3 Ambystoma mavortium ZW* Fitzpatrick et al., 2009

Fitzpatrick and Shaffer, 2004
Riley et al., 2003

Cryptobranchidae
Andrias davidianus Andrias japonicus Fukumoto et al., 2015
Dicamptodontidae
Dicamptodon ensatus XXPC Dicamptodon tenebrosus XXPC Good, 1989
Hynobiidae
Hynobius nebulosus Hynobius nigrescens Kawamura, 1953
Onychodactylus japonicus Onychodactylus japonicus Yoshikawa et al., 2012
S-Tohoku SW-Honshu
Salamandrella keyserlingii XXPC Salamandrella tridactyla XXPC Malyarchuk et al., 2015
Plethodontidae
Aneides klamathensis Aneides flavipunctatus Reilly and Wake, 2019
Batrachoseps gavilanensis Batrachoseps luciae Jockusch and Wake, 2002
Bolitoglossa franklini XXPC Bolitoglossa lincolni XXPC Wake et al., 1980
Desmognathus carolinensis Desmognathus orestes Mead and Tilley, 2000
Desmognathus conanti XX* Desmognathus fuscus XXPC Bonett, 2002
Desmognathus fuscus XXPC Desmognathus ochrophaeus XXPC Sharbel et al., 1995
Desmognathus fuscus XXPC Desmognathus santeetlah XX* Tilley, 1988
Ensatina eschscholtzii croceater XXPC Ensatina eschscholtzii platensis XXPC Pereira and Wake, 2009
Ensatina eschscholtzii eschscholtzii XXPC Ensatina eschscholtzii klauberi XXPC Devitt et al., 2011
Ensatina eschscholtzii oregonensis XXPC Ensatina eschscholtzii picta XXPC Pereira and Wake, 2009
Ensatina eschscholtzii oregonensis XXPC Ensatina eschscholtzii xanthoptica XXPC Pereira and Wake, 2009
Ensatina eschscholtzii platensis XXPC Ensatina eschscholtzii xanthoptica XXPC Alexandrino et al., 2005

Sweet, 1984
Eurycea bislineata XXPC Eurycea cirrigera XXPC Guttman and Karlin, 1986
Eurycea cirrigera XXPC Eurycea wilderae XX* Kozak, 2003
Eurycea neotenes Eurycea tridentifera Kozak and Montanucci, 2001
Hydromantes ambrosii XY1.2.3 Hydromantes italicus XY1.2.3 Lunghi et al., 2018

Ficetola et al., 2019
Plethodon aureolus XX* Plethodon shermani XXPC Highton and Peabody, 2000
Plethodon chattahoochee Plethodon chlorobryonis Highton and Peabody, 2000
Plethodon chattahoochee XX* Plethodon shermani XXPC Highton and Peabody, 2000
Plethodon chattahoochee Plethodon teyahalee Highton and Peabody, 2000
Plethodon cheoah Plethodon teyahalee Highton and Peabody, 2000
Plethodon chlorobryonis Plethodon cylindraceus Highton and Peabody, 2000
Plethodon chlorobryonis XX* Plethodon metcalfi XXPC Highton and Peabody, 2000
Plethodon chlorobryonis Plethodon teyahalee Highton and Peabody, 2000
Plethodon cinereus XXPC Plethodon electromorphus XX* Lehtinen et al., 2016
Plethodon cylindraceus XX* Plethodon glutinosus XXPC Highton and Peabody, 2000
Plethodon dorsalis XXPC Plethodon ventralis XX* Highton, 1997

Duncan and Highton, 1979
Plethodon electromorphus XX* Plethodon richmondi XXPC Highton, 1999
Plethodon fourchensis XX* Plethodon ouachitae XXPC Shepard et al., 2011
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are both found within multiple families, indicating that sex

chromosomes are evolutionarily dynamic in salamanders;

this makes the clade a good system for studying the effects of

heteromorphic sex chromosome evolution on reproductive

isolation (Charlesworth et al., 2005; Evans et al., 2012).

There are numerous studies published on hybrids in

salamanders, both from long-term stable hybrid zones and

conservation efforts (Fitzpatrick and Shaffer, 2004; Fukumoto

et al., 2015). With a few notable exceptions (e.g., Twitty,

1963; Brandon, 1977; Gvoždı́k, 2012; Prokić et al., 2018),

Table 1. Continued.

Parental species

ResourcesSpecies 1

Sex
chromosome

type Species 2

Sex
chromosome

type

Plethodon glutinosus XXPC Plethodon jordani XXPC Hairston et al., 1992
Plethodon glutinosus XXPC Plethodon kentucki XX* Kuchta et al., 2016

Hairston et al., 1992
Plethodon hoffmani Plethodon virginia Highton, 2009

Dawley, 1987
Plethodon jordani XXPC Plethodon metcalfi XXPC Chatfield et al., 2010
Plethodon jordani XXPC Plethodon teyahalee XX* Chatfield et al., 2010
Plethodon metcalfi XXPC Plethodon teyahalee XX* Chatfield et al., 2010
Plethodon shermani XXPC Plethodon teyahalee XX* Highton and Peabody, 2000
Proteidae
Necturus maculosus XY1.2.3 Necturus aff. lewisi XY1.2.3 Nelson et al., 2017
Salamandridae
Chioglossa lusitanica Chioglossa lusitanica Sequeira et al., 2005
Northern Southern
Cynops pyrrhogaster Cynops pyrrhogaster Tominaga et al., 2018
Central Western
Lissotriton helveticus XY2.3 Lissotriton vulgaris XY2.3 Johanet et al., 2011
Lissotriton montandoni XY* Lissotriton vulgaris XY2.3 Babik et al., 2005

Zieliński et al., 2013
Lissotriton vulgaris kosswigi XY2.3 Lissotriton vulgaris vulgaris XY2.3 Nadachowska and Babik, 2009
Lyciasalamandra antalyana Lyciasalamandra billae Johannesen et al., 2006
Notophthalmus viridescens Notophthalmus viridescens dorsalis Takahashi et al., 2011
Ommatotriton ophryticus Ommatotriton nesterovi van Riemsdijk et al., 2018
Ommatotriton ophryticus Ommatotriton vittatus Yoshikawa et al., 2010

van Riemsdijk et al., 2018
Pleurodeles nebulosus ZW* Pleurodeles poireti ZW2.3 Escoriza et al., 2016
Salamandra salamandra gallaica XXPC Salamandra salamandra bernardezi XXPC Garcı́a-Parı́s et al., 2003
Salamandra fastuosa XXPC Salamandra terrestris XXPC Ventura et al., 2015

Canestrelli et al., 2014
Garcı́a-Parı́s et al., 2003

Salamandrina perspicillata XX* Salamandrina terdigitata XXPC Hauswaldt et al., 2011
Mattoccia et al., 2011
Arntzen et al., 2009

Taricha rivularis XX* Taricha sierrae XXPC Twitty, 1963
Taricha rivularis XX* Taricha torosa XXPC Twitty, 1963
Taricha torosa XXPC Taricha sierrae XXPC Kuchta, 2007
Triturus carnifex XY2.3 Triturus cristatus XY1.2.3 Arntzen et al., 2014
Triturus carnifex XY2.3 Triturus dobrogicus XY* Arntzen et al., 2014
Triturus carnifex XY2.3 Triturus ivanbureschi XY* Arntzen et al., 2014
Triturus carnifex XY2.3 Triturus macedonicus XY* Arntzen et al., 2014
Triturus cristatus XY1.2.3 Triturus dobrogicus XY* Arntzen et al., 2014
Triturus cristatus XY1.2.3 Triturus ivanbureschi XY* Arntzen et al., 2014
Triturus cristatus XY1.2.3 Triturus macedonicus XY* Arntzen et al., 2014
Triturus cristatus XY1.2.3 Triturus marmoratus XY1.2.3 Visser et al., 2017
Triturus ivanbureschi Triturus macedonicus Vučić et al., 2018

1 Evans et al., 2012
2 Hillis and Green, 1990
3 Perkins et al., 2019
* Predicted sex chromosome type
PC Personal correspondence, Stan Sessions, 2019
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there have not been extensive published experimental
crosses in salamanders like those done in other vertebrate
clades (e.g., toads, Blair, 1972; Malone and Fontenot, 2008).
Here, we summarize the known cases of hybridization in
salamanders. We then use this dataset to compare the genetic
distances across which viable hybrids can form in different
tetrapod groups and test whether differences in metabolic
rate and sex chromosomes impact hybridization.

MATERIALS AND METHODS

Compilation of salamander hybrids.—The first goal was the
establishment of a comprehensive list of published salaman-
der hybrids, which did not exist when we began this research
(Table 1). Taxonomy is continually revised to provide
scientific names that convey accurate information about
species boundaries as well as the evolutionary relationships
among species. Making these species designations is a rich
discipline, with disagreements among taxonomists requiring
different levels of divergence or isolation between popula-
tions before they are formally named as species (Highton,
1998; Kuchta and Wake, 2016). For our literature review, we
used a general lineage concept of species where a species
equates to a segment of a population-level evolutionary
lineage (de Queiroz, 1998). We chose to include populations
far enough along their own evolutionary trajectories that
when secondary contact occurred, the populations did not
completely admix into a single population. By doing this, we
were able to include several instances of hybridization in
which the hybridizing populations have not been formally
named as species. We included cases where secondary
contact occurred because of human-mediated introductions,
and we also included laboratory crosses. Hybridization that
resulted in polyploidy was excluded to eliminate the
confounding variable of increased ploidy levels. Species with
evidence of historical, but not ongoing, hybridization were
also excluded. This compilation of hybridizing species
represents extant salamanders that are known to have had
the opportunity to hybridize and done so successfully; there
are undoubtedly pairs of lineages that would be able to
hybridize, given the opportunity (either with or without
human mediation), as well as undetected instances of natural
hybridization. The criteria we chose allowed us to compile
the maximum amount of information about hybrid sala-
manders from the literature, as well as make comparisons
with existing literature surveys on birds, mammals, and
lizards that applied similar criteria (Fitzpatrick, 2004; Jančú-
chová-Lásková et al., 2015).

Database searches were performed using the terms sala-
mander, newt, hybrid, and contact zone. Databases used
were JSTOR, Web of Science, and Wildlife and Ecology
Studies Worldwide. Using the same terms, additional sources
were found with the search engine Google Scholar. The
searches were undertaken from January 2018 to February
2020 and included research published between 1979–2020.
Many taxonomic changes occurred during this 40-year
period; whenever there was a conflict in species name, the
current listing on AmphibiaWeb (https://amphibiaweb.org)
was used to resolve the issue.

Intensity of research on different salamander families.—To
check whether or not the reported number of hybrids within
each salamander family was a function of the intensity of

publication, a general review was also conducted on how well
each family of salamanders is represented in the literature
(Fig. 1). Using the Web of Science database, searches were
performed using terms based on variations on the salaman-
der family names with two to three search terms used per
family. Terms used were: Ambystomatidae (ambystomatid
and Ambystoma), Amphiumidae (amphiumid and Amphiu-
ma), Cryptobranchidae (cryptobranchid and Cryptobranchus),
Dicamptodontidae (dicamptodontid and Dicamptodon), Hy-
nobiidae (hynobiid and Hynobius), Plethodontidae (pletho-
dontid and Plethodon), Proteidae (proteid), Rhyacotritonidae
(rhyacotritonid and Rhyacotriton), Salamandridae (salaman-
drid and Salamandra), and Sirenidae (sirenid). The genus
names Proteus and Siren were excluded due to their use in
Greek mythology; because the corresponding salamander
families are small, missing papers is unlikely. The number of
articles per family was standardized by dividing by the
number of species in each family based on AmphibiaWeb as
of July 2020 (https://amphibiaweb.org). To test whether the
reported number of hybrids within each salamander family
was related to the intensity of publication, a Kendall
correlation coefficient was calculated comparing papers per
species and hybrids per species for each family.

Genetic distances between hybridizing species of salamanders.—
The genetic distances across the parental species for each
hybridizing salamander pair were estimated using the
mitochondrial gene cytochrome b (MT-CYB; Fig. 2A). MT-
CYB has long been used as a phylogenetic and phylogeo-
graphic marker for salamanders, so there is wide coverage for
many different species (Johns and Avise, 1998). MT-CYB has
also been used as a proxy for overall genetic distance in
summaries of hybridizing pairs of species in other vertebrate
groups (Fitzpatrick, 2004; Jančúchová-Lásková et al., 2015).
For each parental species, the longest high-quality sequence
was downloaded from NCBI GenBank (https://www.ncbi.
nlm.nih.gov/genbank/). In some cases, this involved extract-
ing the MT-CYB sequence from a complete mitochondrial
genome sequence. When multiple equally long, high-quality
sequences were available, one was selected at random. Of the
76 salamander species pairs known to hybridize, MT-CYB
sequence data were available for 62 (Table 2). For each
hybridizing pair, a pairwise alignment was calculated with
default ClustalW settings implemented in MEGA X (Kumar
et al., 2018). Each alignment was then trimmed to the first
and last overlapping nucleotide position. After trimming, the
alignments ranged from 345 to 1,141 base pairs. The genetic
distances were estimated with PAUP * Version 4.0a (Swofford,
2002) using the HKY85 þ C nucleotide substitution model
(Hasegawa et al., 1985). In order to maximize the amount of
sequence data used, the C distribution shape parameter a was
estimated using the MEGA X maximum likelihood model
selector based on a ClustalW alignment of all 81 salamander
MT-CYB sequences used in this study (Kumar et al., 2018).

In order to test how representative MT-CYB genetic
distances are in describing the overall genetic divergence
between species, the substitution rate of mitochondrial genes
versus nuclear genes was compared (Fig. 2B). This was
accomplished by dividing the genetic distance of the
mitochondrial gene MT-CYB by the genetic distance of the
nuclear gene recombination activating 1 (RAG1) for the
parental species that hybridize (Table 2). RAG1 was selected
since the gene has widespread use in phylogenetic studies
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and was available for the most taxa (Chiari et al., 2009). For
every parental species available, the longest high-quality
RAG1 sequence was downloaded from GenBank. When
multiple equally long, high-quality sequences were available,
one was selected at random. RAG1 genetic distances between
parental species that hybridize were then estimated using the
same methods as for MT-CYB genetic distances.

Genetic distances between hybridizing species of salamanders
compared with hybrids in other tetrapod groups.—The MT-
CYB genetic distances between hybridizing parental species
of salamanders were compared to those of birds, mammals,
and lizards (i.e., squamate reptiles excluding snakes). These
tetrapod groups were selected because they span part of the
range of vertebrate metabolic rates (Pough, 1980; White el al.,

2006; Anderson and Gillooly, 2018) and because of the

existence of published summaries of known hybrids that

include natural, human-introduced, and lab-crossed hybrid-

ization events (Fitzpatrick, 2004; Jančúchová-Lásková et al.,

2015). A hybrid toad summary was excluded because it

focused only on experimental crosses (Blair, 1972; Malone

and Fontenot, 2008). In some tetrapod groups, many closely

related species hybridize, or a single species hybridizes several

times. This creates a potential bias when looking at many

pairwise comparisons as a single taxon becomes overrepre-

sented, and the results become dependent on a few select

taxa (Fitzpatrick, 2004). Previously published work in

mammals and birds resolved this issue by removing repeated

taxa to remove nonindependence (Fitzpatrick, 2004), so the

Fig. 1. Salamander hybrids are found in most families (Pyron and Wiens, 2011). About 12.1% of salamanders are known to hybridize with over half
belonging to Plethodontidae. There was no significant correlation between the number of papers per species and the proportion of salamanders
found to hybridize (Kendall’s rank correlation P ¼ 0.236).

Fig. 2. (A) Histogram of cytochrome
b (MT-CYB) genetic distance esti-
mates (HKY85 þ C) between sala-
manders that hybridize. Graph bin
width is 0.0125. (B) Ratio of mito-
chondrial MT-CYB genetic distance to
nuclear recombination activating 1
(RAG1) genetic distance between
parental species of salamanders that
hybridize on a log scale. The ratio of
genetic distance ranged from 0.6 to
162 with the majority of species pairs
having a higher mitochondrial genet-
ic distance (median ¼ 21.1).
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list of hybrids for salamanders and lizards was also pared
down to make results comparable. For salamanders, the
dataset was pared down to a single pair that can hybridize per
genus; all genera are monophyletic. When a genus had
multiple hybridizing species pairs, the pair with the greatest
MT-CYB genetic distance was used. The list of hybrids for
lizards was also pared down to the largest MT-CYB genetic
distance per genus based on previously published work
(Jančúchová-Lásková et al., 2015). MT-CYB genetic distances
between the parental species for each hybridizing species pair
were calculated for birds, mammals, and lizards using the
same methods as for salamanders (Fig. 3, Table 2). For each of
the tetrapod groups, a different C distribution shape
parameter a was estimated using all MT-CYB sequences
included in this study (46 birds, 50 mammals, and 40 lizards;
Kumar et al., 2018). A Kruskal-Wallis test was then used to
determine if the genetic distance across parental species that
hybridize differs among the tetrapod groups. Effect size was
calculated and reported in terms of g2.

In order to test how representative MT-CYB genetic
distances are in describing the overall genetic divergence
between species, the substitution rate of mitochondrial genes
relative to the substitution rate of nuclear genes was
compared across the four vertebrate clades (Fig. 4). This was
accomplished by dividing the genetic distance of the
mitochondrial gene MT-CYB by the genetic distance of the
nuclear gene RAG1 for the parental species that hybridize
(Table 2). RAG1 genetic distances between the parental
species for each hybridizing species pair were calculated for
birds, mammals, and lizards using the same methods as for
salamanders. A Kruskal-Wallis test was used to determine if
the ratio of MT-CYB/RAG1 genetic distances differed among
the four tetrapod groups. A Kruskal-Wallis test was also used
to determine if RAG1 genetic distance differed among the
four tetrapod groups. Effect size was calculated for both tests
and reported in terms of g2.

Relationship between sex chromosomes and hybridization in
salamanders.—A list of the salamanders that have hetero-
morphic sex chromosomes was generated to see if the
presence of heteromorphic sex chromosomes impacted
hybridization. Salamanders with heteromorphic sex chro-
mosomes were identified by using two published reviews and
a recently published amphibian karyotype database (Hillis
and Green, 1990; Evans et al., 2012; Perkins et al., 2019). In
the available literature, it is not always apparent whether a
salamander species is known to have homomorphic sex
chromosomes or if the species was merely never confirmed as
having heteromorphic sex chromosomes (Perkins et al.,
2019). To further clarify, additional unpublished information
on salamanders that are known to have homomorphic sex
chromosomes was obtained (S. Sessions, pers. comm., 19
June 2019). MT-CYB genetic distances between parental
species with heteromorphic sex chromosomes that hybridize
were compared to the genetic distances between parental
species with homomorphic sex chromosomes that hybridize
using a t-test (Fig. 5). A comparison was also made between
the overall percentage of salamanders known to hybridize
and the percentage of salamanders with heteromorphic sex
chromosomes known to hybridize using a one-sided exact
test of goodness-of-fit. The overall results were similar
whether the analyses were performed using only the species
confirmed to have homomorphic sex chromosomes (basedTa
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on personal communication) or using the larger dataset that
assumed that all salamanders that have not been reported to
have heteromorphic sex chromosomes have homomorphic
sex chromosomes.

RESULTS

Hybrids in salamanders.—Our literature review found 81 pairs
of genetically distinct salamander lineages that hybridize in
nature (Table 1). These lineages represent 12.1% of named
salamander species and seven out of ten salamander families
(Fig. 1). The seven families represented include Plethondon-
tidae (42 species), Salamandridae (29 species), Ambystoma-
tidae (9 species), Hynobiidae (5 species), Cryptobranchidae (2
species), Dicamptodontidae (2 species), and Proteidae (2
species; Fig. 1). Many pairs that hybridize come from
Plethondontidae and Salamandridae, consistent with these
being the two largest families of salamanders (486 and 125
species, respectively; https://amphibiaweb.org). The third
largest salamander family (Hynobiidae with 82 species)
contains proportionally fewer hybrids with only three
recorded pairs that can hybridize (Fig. 1). The families
Amphiumidae, Rhyacotritonidae, and Sirenidae have no
recorded cases of hybrids. These families of salamanders
contain very few species with the largest of the three,
Sirenidae, only containing five species. There is no case of

hybridization occurring between species of different genera.

Overall, these results are consistent with those of another

recently published study (Patton et al., 2020).

Intensity of research on different salamander families.—We

identified a total of 32,499 papers published using the

salamander family related terms. Out of the large salamander

families, the family with the highest number of papers per

species, Ambystomatidae, did not have the highest number

of reported hybrids (Fig. 1). However, Ambystoma mexicanum

is a contributor to the high papers-per-species count because

it is a model lab animal and makes up a quarter (2,694) of the

Web of Science results for Ambystomatidae (Fig. 1; Voss et al.,

2010). Two of the families with the highest numbers of

species have the lowest intensity of publication: Hynobiidae

(21 papers per species) and Plethondontidae (13 papers per

species). There are proportionally more papers published for

families with fewer species: Amphiumidae (270 papers per

species), Cryptobranchidae (252 papers per species), Protei-

dae (249.5 papers per species), Dicamptodontidae (107

papers per species), Sirenidae (79 papers per species), and

Rhyacotritonidae (44 papers per species). There was no

significant correlation between the number of papers per

species and the number of salamanders found to hybridize

per family (Kendall’s rank correlation P ¼ 0.236). We

Fig. 3. Cytochrome b (MT-CYB) ge-
netic distances between parental
species that hybridize in different
tetrapod groups. Kruskal-Wallis H test
showed no significant differences
across the groups (P ¼ 0.661).
Salamanders are not hybridizing
across greater genetic distances.

Fig. 4. Genetic distance ratio of
mitochondrial cytochrome b (MT-
CYB) to nuclear recombination acti-
vating 1 (RAG1) for pairs of species
that hybridize in major tetrapod clade
on a log scale. Kruskal-Wallis H test
showed no strong significant differ-
ences across the four groups (P ¼
0.108).
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acknowledge that studies of salamanders address far more
biological questions than only those that are relevant to
hybrid identification. Further analyses based on refined
literature searches that target only the most pertinent
disciplines (e.g., phylogeography, systematics) would provide
a stronger test of the relationship between research effort and
hybrid identification.

Salamander hybrid genetic distances.—For the 62 parental
pairs of salamanders that have published MT-CYB sequence
data, the mean genetic distance was 0.117 (Table 2).
Lissotriton vulgaris X Lissotriton helveticus had the largest
genetic distance of 0.360, while Plethodon teyahalee X
Plethodon shermani had the smallest distance of 0.003 (Table
2). For the 33 parental pairs of salamanders that have
published RAG1 data, the mean genetic distance was
0.00657 (range 0.000683 to 0.0306; Table 2). The genetic
distance ratio of the mitochondrial gene MT-CYB over the
nuclear gene RAG1 between salamanders that hybridize was
highly variable (Fig. 2B). The ratio ranged from 0.6x to 162x
with most species pairs having a higher mitochondrial
genetic distance (median ratio ¼ 21.1).

Genetic distances between parental species that hybridize in
different tetrapod groups.—After paring down the salaman-
ders and lizards to the pair that can hybridize with the
highest genetic distance per genus, the across-tetrapod
comparison included 23 pairs of hybrids for birds, 20 pairs
for lizards, 25 pairs for mammals, and 18 pairs for
salamanders (Table 2). The median MT-CYB genetic distances

for the groups were: lizards (0.181), birds (0.167), salaman-
ders (0.160), and mammals (0.152; Fig. 3). There were no
significant differences in distributions of genetic distance
among the four groups (v2¼ 1.5922, P¼ 0.66, g2¼ –0.0172).
Across all tetrapods, birds had both the lowest and highest
genetic distances with Regulus calendula X Regulus satrapa
(0.002) and Gallus gallus X Alectura lathami (0.366). Using the
pared down list of hybrids, RAG1 sequences were available
for 12 pairs of hybrids for birds, 10 pairs for lizards, 10 pairs
for mammals, and 13 pairs for salamanders (Table 2). The
median RAG1 genetic distances for the four groups were:
birds (0.0151), mammals (0.00722), salamanders (0.00651),
and lizards (0.00600). There were no significant differences
among the four tetrapod groups (v2 ¼ 5.8748, P ¼ 0.12; g2 ¼
0.0701). The median MT-CYB/RAG1 genetic distance ratio
for the four groups were: lizards (23.4), salamanders (20.7),
mammals (17.6), and birds (10.6; Fig. 4). There were no
significant differences among the four tetrapod groups (v2 ¼
6.0734, P ¼ 0.11; g2 ¼ 0.075).

Relationship between sex chromosomes and hybridization in
salamanders.—Forty-eight species of salamanders in seven
families have been discovered with heteromorphic sex
chromosomes (Ambystomatidae, Hynobiidae, Plethodonti-
dae, Proteidae, Salamandridae, Sirenidae, and Proteidae;
Table 3). Salamander families are not characterized by a
single type of sex chromosome; different members of
Salamandridae and Plethodontidae have ZZ/ZW and XX/
XY systems. Out of the salamanders with known hetero-
morphic sex chromosomes, 12/48 are known to hybridize
with a different species (Table 3). There is no difference
between the percentage of salamanders that hybridize with
known heteromorphic sex chromosomes and the known
overall salamander hybridization rate (P ¼ 0.99). Also, the
genetic distances between parental salamanders that hy-
bridize with known heteromorphic sex chromosomes
(median ¼ 0.109) and parental salamanders that hybridize
with homomorphic sex chromosomes (median¼ 0.152) are
not significantly different (P ¼ 0.53; Fig. 5). Based on these
analyses, there is no indication that the presence of
heteromorphic sex chromosomes hinders hybridization in
salamanders.

DISCUSSION

Overall, we found that hybridization is widespread through-
out the salamander clade, occurring in both the biggest and
smallest families (Fig. 1). The largest four families (Ambysto-
matidae, Hynobiidae, Plethodontidae, and Salamandridae)
account for nearly 96% of all salamander species and account
for over 91% of the hybrids (Fig. 1). With respect to
geographic location, known hybrids are widespread in the
Northern temperate zone, occurring in North America,
Europe, and Asia. In contrast, there is only one reported
case of salamanders hybridizing in the tropics, occurring
between Bolitoglossa franklini and B. lincolni (Table 1).
Bolitoglossa is the largest genus of salamanders (134 species),
and it occurs exclusively in the tropics. More generally, close
to half of all salamander diversity occurs in the tropics,
suggesting that the low reported number of tropical hybrids
is not a result of low tropical species diversity (https://
amphibiaweb.org). If the low reported number of hybrids is
an accurate reflection of the underlying biological reality, it

Fig. 5. Genetic distances between salamanders that hybridize with
heteromorphic sex chromosomes (median ¼ 0.109) and salamanders
that hybridize without sex chromosomes (median¼ 0.152). There is no
significant difference (P ¼ 0.5293) between salamanders with sex
chromosomes and salamanders without sex chromosomes.
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may reflect general differences in mechanisms underlying
the origin and maintenance of species in temperate versus
tropical areas worthy of further investigation (Kozak and
Wiens, 2010). However, low reported numbers of hybrids
could also mean that additional cases have yet to be
discovered and described. Additional research will allow
discrimination between these two possibilities.

Both the mitochondrial genetic distances (estimated with
MT-CYB) and the nuclear genetic distances (estimated with
RAG1) between parental species of salamanders that hybrid-
ize spanned two orders of magnitude (0.003 to 0.360 and
0.0007 to 0.020, respectively). The ratio of genetic distances
between these two genes provides an estimate of the
difference in substitution rates of the two genomes. In

Table 3. Heteromorphic sex chromosomes in salamanders.

Species Family Sex chromosome type Hybrid (Yes/No)

Ambystoma jeffersonianum 3 Ambystomatidae ZW No
Ambystoma laterale 1,2,3 Ambystomatidae ZW No
Ambystoma mexicanum 1,2,3 Ambystomatidae ZW Yes
Ambystoma tigrinum 1,2,3 Ambystomatidae ZW Yes
Hynobius hidamontanus 1,3 Hynobiidae ZW No
Hynobius quelpaertensis 1,3 Hynobiidae ZW No
Hynobius tokyoensis 3 Hynobiidae ZW No
Aneides ferreus 1,2,3 Plethodontidae ZW No
Bolitoglossa subpalmata 1,2,3 Plethodontidae XY No
Chiropterotriton dimidiatus 1,2,3 Plethodontidae ZW No
Cryptotriton veraepacis 1,2,3 Plethodontidae XY No
Dendrotriton bromeliacius 2,3 Plethodontidae XY No
Dendrotriton cuchumatanus 2 Plethodontidae XY No
Dendrotriton rabbi 1,2,3 Plethodontidae XY No
Dendrotriton xolocalcae 1,2,3 Plethodontidae XY No
Hydromantes ambrosii 1,2,3 Plethodontidae XY Yes
Hydromantes flavus 1,2,3 Plethodontidae XY No
Hydromantes imperialis 1,2,3 Plethodontidae XY No
Hydromantes italicus 1,2,3 Plethodontidae XY Yes
Hydromantes genei 3 Plethodontidae XY No
Hydromantes supramontis 1,3 Plethodontidae XY No
Nototriton abscondens 1,3 Plethodontidae XY No
Nototriton picadoi 1,2,3 Plethodontidae XY No
Nototriton richardi 1 Plethodontidae XY No
Oedipina cyclocauda 1 Plethodontidae XY No
Oedipina parvipes 1,2 Plethodontidae XY No
Oedipina poelzi 1,2,3 Plethodontidae XY No
Oedipina pseudouniformis 1 Plethodontidae XY No
Oedipina uniformis 2,3 Plethodontidae XY No
Thorius dubitus 1,2,3 Plethodontidae XY No
Thorius pennatulus 2,3 Plethodontidae XY No
Necturus alabamensis 3 Proteidae XY No
Necturus beyeri 1,2,3 Proteidae XY No
Necturus lewisi 1,2,3 Proteidae XY Yes
Necturus maculosus 1,2,3 Proteidae XY Yes
Necturus punctatus 1,2,3 Proteidae XY No
Ichthyosaura alpestris 3 Salamandridae XY No
Lissotriton boscai 3 Salamandridae XY No
Lissotriton helveticus 2,3 Salamandridae XY Yes
Lissotriton italicus 2,3 Salamandridae XY No
Lissotriton vulgaris 2,3 Salamandridae XY Yes
Pleurodeles poireti 1,2,3 Salamandridae ZW Yes
Pleurodeles waltl 1,2,3 Salamandridae ZW No
Triturus carnifex 2,3 Salamandridae XY Yes
Triturus cristatus 1,2,3 Salamandridae XY Yes
Triturus karelinii 1,3 Salamandridae XY No
Triturus marmoratus 1,2,3 Salamandridae XY Yes
Siren intermedia 1,2 Sirenidae ZW No

1 Evans et al., 2012
2 Hillis and Green, 1990
3 Perkins et al., 2019
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vertebrates, the mitochondrial genome typically has a higher
substitution rate than the nuclear genome (Brown et al.,
1979). However, this ratio is variable across genes and species
in all of the major vertebrate clades including amphibians,
where the majority of the estimates are from frogs (Allio et
al., 2017). Our salamander estimates (0.6 to 162, median ¼
21.1) are consistent with existing estimates for other
vertebrate taxa, suggesting similar relative evolutionary rates
between the two genomes. Because the MT-CYB and RAG1
sequences used are short (345–1,141 bp and 556–1,510 bp,
respectively) and represent single loci, some of the variation
in genetic distance estimates reflects sampling error.

The ratio between mitochondrial and nuclear genetic
distances can also be used to identify candidate examples
where loci have introgressed from one parental species to
another. In our dataset, potential cases of mitochondrial
introgression would show a ratio much less than the median
(i.e., ,,21.1) These potential cases include Salamandrina
perspicillata X Salamandrina terdigitata (MT-CYB /RAG1 ratio¼
0.6) and Eurycea neotenes X Eurycea tridentifera (MT-CYB /
RAG1 ratio ¼ 0.9; Table 2). In phylogeographic studies,
hybridization between Salamandrina perspicillata and S.
terdigitata was identified to have limited mitochondrial
introgression (Mattoccia et al., 2011). Additional cline-based
analysis of mitochondrial and nuclear introgression across
the hybrid zones of salamanders with extreme mitochondri-
al/nuclear genetic distance ratios would be informative.

Within each tetrapod group, the genetic distance between
parental species that hybridize is highly variable, but we
found no significant differences in genetic distances among
the groups. In addition, there were no significant differences
in the ratio of mitochondrial to nuclear genetic distances
among the groups. Taken together, these results suggest that
speciating lineages of salamanders retain the ability to
hybridize at similar overall genetic divergence levels as
speciating lineages in other tetrapod groups. Thus, the
differences in metabolic rates across tetrapods do not appear
to translate into predictable patterns of overall genetic
divergence and incompatible loci in hybrids. This pattern
may reflect a similar evolved match between metabolic
‘‘supply and demand’’ (i.e., ATP use and ATP synthesis;
Darveau et al., 2002) in all tetrapod clades, irrespective of
overall metabolic rates, such that increased metabolic costs in
hybrids have equal detrimental effects on fitness. Cline
analyses of OXPHOS-specific loci, combined with OXPHOS
functional data in parental species and hybrids, would allow
more rigorous testing of this hypothesis.

The presence of heteromorphic sex chromosomes does not
appear to deter salamanders from hybridizing (Fig. 3). This
pattern suggests that, despite evolutionary lability in am-
phibian sex chromosomes (Hillis and Green, 1990; Evans et
al., 2012; Sessions et al., 2016), the underlying genetic sex-
determining factors might be sufficiently conserved to not be
a barrier to reproduction. Consistent with this explanation,
for some salamanders, the difference between the hetero-
morphic sex chromosomes is extremely small (Schartl et al.,
2016; Keinath et al., 2018), showing that the selective
pressures might be similar on each chromosome or that the
region of suppressed recombination on the X or Z chromo-
somes is small (unlike in birds or mammals; Schartl et al.,
2016). Additionally, evidence that cryptobranchid salaman-
der homomorphic sex chromosomes have been conserved
for nearly 60 million years (Hime et al., 2019) suggests that

the underlying genes for determining sex may be highly
conserved. Finally, we note that the relationship between sex
chromosome morphology and reproductive isolation is
complex; in some cases, even homomorphic sex chromo-
somes show a large X/Z effect (e.g., Hyla arborea X H.
orientalis, Dufresnes et al., 2016).

In conclusion, this comprehensive analysis of salamander
hybrids revealed hybrids throughout the clade with a wide
range of genetic divergences between parental species.
Despite being outliers among tetrapods in metabolic rate
and sex chromosome diversity, both of which were predicted
to impact the relationship between genetic divergence and
reproductive isolation, our analyses suggest that salamanders
hybridize across similar levels of genetic divergence to the
other examined tetrapod groups. This study further demon-
strates the power of comparative studies of hybridization as
an approach to understanding the process of speciation.
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