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THERMAL PERFORMANCE CURVES AND THE METABOLIC THEORY OF ECOLOGY—A

PRACTICAL GUIDE TO MODELS AND EXPERIMENTS FOR PARASITOLOGISTS

Péter K. Molnár, Jason P. Sckrabulis*, Karie A. Altman*, and Thomas R. Raffel*

Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada. Correspondence should be
sent to Péter K. Molnár at: peter.molnar@utoronto.ca

ABSTRACT: Climate change will affect host–parasite dynamics in complex ways. The development of forecast models is
necessary for proactive disease management, but past studies have frequently reported thermal performance data in
idiosyncratic ways that have limited use for parameterizing thermal host–parasite models. Development of improved
forecast models will require strong collaborations between experimental parasitologists and disease modelers. The

purpose of this article is to facilitate such collaborations by reviewing practical considerations for describing thermal
performance curves of parasite and host performance traits, and using them to predict climate change impacts on host–
parasite systems. In the first section, we provide an overview of how thermal performance curves can be embedded in

life-cycle–based dynamical models of parasitism, and we outline how such models can capture the net effect of multiple
nonlinear temperature dependencies affecting the host–parasite dynamics. We also discuss how macroecological
generalities based on the metabolic theory of ecology (MTE) can be used to determine a priori parameter estimates for

thermal performance curves to derive null models for data-deficient species, but we note that most of the generalities
suggested by MTE remain to be tested for parasites. In the second section, we discuss empirical knowledge gaps for the
temperature dependence of parasite and host performance traits, and we outline the types of data that need to be

collected to inform MTE-based models for data-deficient species. We specifically emphasize the importance of (1)
capturing the entire thermal response of performance traits, including lower and upper temperature thresholds, and (2)
experimentally or statistically separating out the thermal responses of different performance traits (e.g., development
and mortality) rather than only reporting composite measures (e.g., apparent development). Not adhering to these

principles can lead to biased climate change impact predictions. In the third section, we provide a practical guide
outlining how experimentalists can contribute to fill data gaps by measuring the temperature dependence of host and
parasite performance traits in ways that are systematic, statistically rigorous, and consistent with the requirements of

life cycle–based host–parasite models. This guide includes recommendations and practical examples illustrating (1) the
use of perturbation analyses to determine experimental priorities, (2) experimental design tips for quantifying thermal
response curves, and (3) statistical methods for estimating the parameters of thermal performance curves. Our hope is

that this article helps researchers to maximize the value and use of future data collections for both empirical and
modelling studies investigating the way in which temperature influences parasitism.

Temperature affects the dynamics of hosts, vectors, and

parasites in multifaceted ways, with some effects benefiting

parasite transmission and others acting in the opposite direction

(Rogers and Randolph, 2006; Gallana et al., 2013; Raffel et al.,

2013). For example, warmer temperatures typically increase the

development rates of free-living parasite larvae while simulta-

neously reducing their survival times (Paull et al., 2012; Brady et

al., 2013; Molnár et al., 2013b). Similarly, warmer temperatures

generally increase the rates of development and reproduction of

parasites within ectotherm hosts, but can also increase their

mortality, for example, by boosting the performance of the host’s

immune system or by increasing natural host mortality (Raffel et

al., 2006; Paull et al., 2015). Due to such interacting forces,

climate change is likely to alter the phenology, ranges, and

infection dynamics of hosts and parasites in complex and often

nonintuitive ways (Harvell et al., 2002; Mangal et al., 2008;

Pickles et al., 2013). Unraveling these complexities and forecast-

ing likely climate change impacts on parasitism are critical to

informing the management of human and wildlife diseases and

remain key challenges for parasitologists and disease ecologists in

the 21st century (Altizer et al., 2013).

Mathematical models provide powerful tools to synthesize

multiple interacting forces and forecast short-term (weather) and

long-term (climate) effects on the dynamics of hosts and parasites

(Mangal et al., 2008; Pascual et al., 2008; Ewing et al., 2016;

McCallum, 2016). The accuracy of such forecasts, however, is

often limited by the availability of laboratory and/or field

measurements showing how temperature affects key traits of host

and parasite performance, that determine R0, parasite prevalence

and average abundance in hosts, and other disease metrics (Rohr

et al., 2013). Such traits, collectively referred to as ‘‘performance

traits’’ throughout this article, include physiological rates (e.g.,

larval development from hatching to an infective stage), vital rates

(reproduction and mortality of hosts and parasites), and

interaction rates between hosts and parasites (e.g., rates of

parasite uptake by hosts, or host resistance to parasite establish-

ment following uptake).

In essence, the problem is twofold. First, due to their high

species diversity (Dobson et al., 2008), data only exist for a

minuscule fraction of parasitic species, making it impossible to

parameterize and test species-specific forecast models in most

cases (Rodó et al., 2013). Second, many parasitological studies

measure the temperature dependencies of performance traits in

idiosyncratic ways (see section 2), making it difficult to discover

among-species generalities that could inform forecast models for

data-deficient species. In the absence of sufficient data or

documented generalities, however, modelers must rely on untested
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assumptions about the temperature dependence of model

parameters, resulting in potentially unreliable model predictions

and management recommendations.

This article is founded on our conviction that experimentalists

and modelers need to interact more closely to maximize the value

and use of parasitological data for forecasting climate effects on

disease dynamics. Good parasitological data are obviously

necessary for the development, parameterization, and testing of

disease models; in turn, models can enhance experimental work

by synthesizing diverse data in tractable frameworks, providing

more sophisticated experimental predictions, and identifying key

data gaps (Hilborn and Mangel, 1997; Restif et al., 2012; Urban et

al., 2016). Unfortunately, this iterative process is too often

hampered by poor communication between modelers and

experimentalists, sometimes resulting in the collection of data

that are difficult to use in the parameterization of host–parasite

models (section 2). The purpose of this synthesis article is to

facilitate this communication by establishing clear links among (1)

life cycle–based models that characterize the impacts of temper-

ature on host–parasite dynamics, (2) macroecological generalities

based on the metabolic theory of ecology (MTE), which can

inform these models, (3) parasitological data gaps that are

suggested by these approaches, and (4) rigorous experimental

procedures for filling these gaps. As such, our article is structured

as follows:

� In section 1, we review key challenges in modeling temperature

effects on the interactive dynamics of parasites and hosts, and

we discuss how MTE-based life cycle models can capture the

net outcome of multiple interacting temperature dependencies.

To allow these models to do so, we emphasize the importance

of: (1) experimentally or statistically separating out the

respective temperature-dependent contributions of different

performance traits to life cycle transitions (e.g., the confound-

ing influences of larval development and mortality on the rate

at which uninfective larvae reach an infective stage), and (2)

capturing the entire thermal response of each performance

trait, including lower and upper temperature thresholds.
� In section 2, we review the critical data and knowledge gaps

that are suggested by these approaches and that currently

prevent the development of reliable thermal host–parasite

models for most species.
� In section 3, we provide a step-by-step guide that outlines how

experimentalists can contribute to filling these gaps by

measuring the temperature dependence of host and parasite

performance traits in ways that are systematic, statistically

rigorous, and consistent with the requirements of commonly

used mechanistic host–parasite models. This guide includes

recommendations and practical examples illustrating (1) the use

of perturbation analyses to prioritize the performance traits

that are the most critical to quantify, (2) experimental design

tips for quantifying thermal response curves, and (3) best

practices for the statistical analysis of thermal response data.

Throughout this article, we emphasize models of thermal

performance that are based on the MTE, due to their ability to

synthesize multiple thermal processes across different levels of

biological organization and their potential for providing a priori

parameter estimates for data-deficient species (Brown et al., 2004).

We also focus primarily on parasite interactions with their hosts

at the individual and population levels. However, we stress that

the approaches and arguments outlined in this article are broadly

applicable, including to non-MTE-based models of thermal

responses, as well as for studying community-level parasite

dynamics.

SECTION 1: THEORETICAL OVERVIEW

Challenges for parasite thermal biology—complex life
cycles and species interactions

Most parasite life cycles include at least one environmental

stage and/or a stage within an ectotherm (intermediate or

definitive) host, resulting in direct temperature effects on various

performance traits (Roberts et al., 2000; Rohr et al., 2011). The

temperature dependencies of these traits, in turn, can interact in

complex ways to influence the population dynamics of hosts and

parasites, and thus also the prevalence and severity of disease

(Rogers and Randolph, 2006; Gallana et al., 2013). For

visualization, consider the two example life cycles in Figure 1,

which we will refer to throughout this article. The first represents

a nematode parasite like Ostertagia gruehneri, with one endo-

therm definitive host and a mandatory free-living stage during

which larvae need to develop to infectivity (Fig. 1A, B; Molnár et

al., 2013b). The second represents a two-host trematode parasite

like Schistosoma mansoni, with one endotherm definitive host, one

ectotherm intermediate host, within which both development and

asexual reproduction occur, and mandatory free-living stages in

between these within-host stages (Fig. 1C, D; Mangal et al., 2008).

In both examples, the host–parasite dynamics are governed by

the combined influences of multiple performance traits, including

physiological, vital, and interaction rates (Fig. 1B, D), and each of

these traits may in turn be influenced by multiple temperature-

dependent host or parasite processes (Fig. 1A, C). The

probabilities of parasite establishment following infection (qG,

qH), for example, are functions of both parasite infectivity and

host resistance to infection, either one of which may be influenced

by environmental temperature (Rohr et al., 2013). In general, all

processes governing the host–parasite dynamics (Fig. 1; Table I)

fall into one of four categories: (I) processes that occur entirely

within endotherm hosts (e.g., egg production by adult parasites);

(II) processes that do not involve interactions between hosts and

parasites (e.g., the development rates of free-living parasite larvae

or uninfected hosts); (III) host–parasite interactions before

infection (encounter rates and parasite uptake); and (IV) host–

parasite interactions that occur within an ectotherm host. Here,

we will focus on those processes that are directly impacted by

temperature (categories II–IV). The transition rates and impacts

of parasites within endotherm hosts (category I) may of course

also be affected by climate changes, but these effects are usually

indirect, substantially more complex, and less amenable to

experimentation, and they have been reviewed elsewhere (Martin

et al., 2008; Morley and Lewis, 2014; Gethings et al., 2015;

Mignatti et al., 2016).

Thermal performance curves and the MTE

The temperature dependence of physiological rates, vital rates,

and interaction rates can be described by thermal performance

curves, which display these rates as a function of temperature

(Fig. 2; Angilletta, 2009). Thermal performance curves are
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FIGURE 1. Schematic of the life cycles (A, C) and dynamical models (B, D) for two generalized parasite life cycles. A and B represent a specialist
nematode with an endotherm host (H) that harbors adult parasites (P), and a mandatory free-living stage (LU) during which larvae need to develop to
infectivity (LI). C and D represent a trematode where free-living eggs (E) hatch into miracidiae (M) that then seek out and infect intermediate hosts (G).
Following establishment inside these hosts, larvae pass through multiple sporocyst stages (Si) before they asexually produce cercariae (C) that pass out of
the intermediate host and actively seek out a definitive host (H), within which they complete development to the adult stage (P). In A and C, blue and red
arrows represent host or parasite performance traits that have positive and negative effects on parasite transmission, respectively. In B and D, solid
arrows represent the rates of parasite birth (kx), development (hx), mortality (lx), and host encounter (qx), the probabilities of establishment within a
host following infection (qx), as well as host birth (bx) and death (dx); the influences of the parasite on host birth (bx) and death (dx) are marked by
dashed arrows. Temperature-dependent rates and influences are marked blue for parameters that only involve a single free-living player, green for
parameters that involve host–parasite interactions within the environment, and red for host–parasite interactions that occur within an ectotherm host.
Parameters that are assumed to be temperature independent due to host endothermy are marked black.
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typically unimodal across all possible temperatures (i.e., exhibit-

ing a single temperature of peak performance) and display steep

threshold behavior at the lower and upper boundaries of an

organism’s thermal niche (Fig. 2). Various mathematical models

have been developed to describe the unimodality of thermal

performance curves, but most are purely phenomenological with

parameters that have limited biological meaning (Régnière et al.,

2012).

A mechanistic approach to describing thermal performance

curves is provided by the MTE, which postulates that ecological

processes across all levels of biological organization can be

inferred from organismal metabolism (Brown et al., 2004),

including the development, mortality, and reproduction of

parasites and hosts, within-host processes such as parasite

pathogenicity and host immune responses, critical disease metrics

such as R0, and community-level characteristics such as parasite

biomass and abundances (Hechinger et al., 2011; Molnár et al.,

2013b; Rohr et al., 2013). According to MTE, each of these

processes is ultimately governed by the rates of organismal

metabolism, which in turn follow predictable relationships with

organism body mass and temperature (Gillooly et al., 2001, 2002).

Specifically, MTE postulates that the temperature dependence of

organism metabolism is governed by the reaction rates of

metabolic enzymes, the activity levels of which increase exponen-

tially as a function of temperature at intermediate temperatures of

an organism’s fundamental thermal niche (Gillooly et al., 2001;

Brown et al., 2004; Molnár et al., 2013b). These dynamics are

embodied in the Boltzmann–Arrhenius (BA) relation,

yðTÞ ¼ y0e
� Ey

k
1
T� 1

T0

� �
; ð1Þ

which describes metabolism, y, as a function of temperature, T

(measured in Kelvin; Table I). Near the boundaries of an

organism’s thermal niche, where temperatures are high or low

enough to reversibly inactivate key metabolic enzymes, metabolic

TABLE I. Parameter notations for the life cycle–based host–parasite models of Figure 1, and for the underlying thermal performance curves.

Parameter Definition Units*

Performance traits of hosts and parasites determining the host–parasite dynamics

y Metabolic rate J � time�1

kx Per capita reproduction rate of stage x Time�1

hx Per capita development rate of stage x Time�1

lx Per capita mortality rate of stage x Time�1

qx Per capita uptake rate of parasites by host type x Time�1 � host abundance�1
qx Probability of establishment within host type x following uptake —

bx Per capita rate of birth for host type x Time�1

dx Per capita rate of death for host type x Time�1

bx Instantaneous reduction in host fecundity due to the presence of parasites in stage x Time�1 � parasite abundance�1

dx Instantaneous mortality rate of hosts due to the presence of parasites in stage x Time�1 � parasite abundance�1

Parameters of thermal performance curves

y0, h0, l0 etc. Baseline values of the above performance traits at a reference temperature T0 [Units of trait] � time�1

T0 Reference temperature (set arbitrarily such that TL ,, T0 ,, TH) K

Ez Activation energy of trait z eV

Ez
L, Ez

H Low- and high-temperature inactivation energies of trait z eV

Tz
L, Tz

H Low- and high-temperature inactivation thresholds for trait z K

k Boltzmann’s constant eV K�1

* For simplicity, we report temperature values in degrees Celsius (C) throughout the manuscript; however, note that for application in the BA and SS
models (equations 1, 2) these values must be transformed into Kelvin (K) by adding 273.15 degrees.

FIGURE 2. Typical thermal performance curve showing the low and
high temperatures for enzyme inactivation (TL and TH), the temperature
of peak performance (Tpk), the critical thermal minimum and maximum
where performance drops to zero (CTmin and CTmax), and the ‘linear’
Arrhenius region. The curve was generated using the Sharpe-Schoolfield
model (equation 2) with E¼0.65 eV,�EL¼EH¼6.2 eV, TL¼5 C, and TH

¼ 29 C.
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performance steeply drops toward zero, resulting in unimodal

thermal performance curves (Sharpe and Demichele, 1977;

Schoolfield et al., 1981; Dell et al., 2011; Corkrey et al., 2012;

Molnár et al., 2013b). These additional dynamics are captured by

a unimodal extension of the BA model, the Sharpe–Schoolfield

(SS) model:

yðTÞ ¼ y0e
� Ey

k
1
T� 1

T0

� �
�

 
1þ e

ELy
k

1

TLy
� 1

T

� �
þ e

EHy
k

1

THy
� 1

T

� �!�1
: ð2Þ

In both equations, y0 represents metabolic rate at a standardiza-

tion temperature T0, which should approximately be chosen at an

intermediate value of the organism’s thermal niche but can

otherwise be set arbitrarily (Fig. 2; Schoolfield et al., 1981).

Effects of organism size are frequently incorporated into these

equations by assuming that y0 scales allometrically with body

mass (i.e., y0 � massa; Gillooly et al., 2001; Brown et al., 2004),

but we will focus on the temperature-dependent components of

equations 1 and 2 throughout this article. The parameter Ey

represents the activation energy of the rate-limiting enzyme(s),

and it describes how rapidly metabolism increases with temper-

ature within the organism’s normal tolerance range; k is

Boltzmann’s constant. The SS model adds realism to the BA

equation by incorporating enzyme inactivation at the lower and

upper temperature thresholds, Ty
L and Ty

H, with the inactivation

energies Ey
L and Ey

H determining how rapidly metabolic rate rises

and drops near the lower and upper boundaries of the organism’s

tolerance range, respectively (Table I).

Although the SS model is relatively complex, with six free

parameters (y0, Ey, Ty
L, Ty

H, Ey
L, and Ey

H), each parameter

fulfills a distinct role in governing the shape of the thermal

performance curve (e.g., both Ey
L and Ey

H have negligible effects

at intermediate temperatures but drive performance at low and

high temperature extremes, respectively). This important feature

ensures parameter separability, meaning that all model parame-

ters can be estimated when fitting the model to (sufficient) data

(section 3; de Jong and van der Have, 2009; Régnière et al., 2012).

Moreover, in cases where either low- or high-temperature

inactivation is undetectable or irrelevant, given the temperature

ranges that the parasite is or will be experiencing, equation 2 can

easily be simplified to reduce the number of free parameters by

removing either of these components (i.e., by setting Ty
L ¼ 0

[Kelvin] or Ty
H ¼ ‘; Schoolfield et al., 1981); see Suppl. Mat.

Appendix S4.4 and equation S3 for an example. However, in

general, we do not recommend such model reductions due to the

importance of these thresholds for determining phenological

changes, range changes, and the effects of increasingly frequent

extreme weather events (see section 3).

From this basis, MTE derives the likely temperature dependence

of higher-level biological processes by explicitly considering the

relationship of each process to organismal metabolism. Processes

that do not involve any species interactions (e.g., development rates

or movement rates of free-living parasites; category II in the section

‘‘Challenges for parasite thermal biology-complex life cycles and

species interactions’’), for example, are expected to follow the BA

and SS relationships with activation and inactivation energies (Ez,

Ez
L, Ez

H) comparable to those of metabolism (Ey, Ey
L, Ey

H; Brown

et al., 2004), but likely with a somewhat narrower thermal breadth

than basal metabolism (Ty
L , Tz

L; Tz
H , Ty

H; van der Have,

2002). These expectations have been verified in a wide range of

organisms and traits (Gillooly et al., 2002; Brown et al., 2004; Dell

et al., 2011).

The likely temperature dependence of processes that involve

species interactions (categories III and IV in the section

‘‘Challenges for parasite thermal biology-complex life cycles and

species interactions’’) can also be described using MTE, but this

requires explicit consideration of the interaction process. Survival

times, for example, may relate closely to the SS model of

metabolism if natural mortality outweighs predation mortality

(McCoy and Gillooly, 2008; Molnár et al., 2013b), but would

scale with both predator and prey metabolism otherwise (Dell et

al., 2014; Gilbert et al., 2014). Similar arguments can be made for

the encounter rate between parasites and hosts (category III in the

section ‘‘Challenges for parasite thermal biology-complex life

cycles and species interactions’’), which can be derived from

movement patterns and movement speeds, where the latter again

tend to scale with metabolism (Pawar et al., 2012). Dell et al.

(2014), for example, suggested that predator–prey encounter rates

should be proportional to (1) the metabolic rate of the prey,

yprey(T), for ambush (sit-and-wait) predation; (2) the metabolic

rate of the predator, ypred(T), if the predator moves much faster

than the prey (e.g., grazing); and (3)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ypredðTÞ2 þ ypreyðTÞ2

q
if

both predator and prey move randomly at comparable speeds.

[Note that in all cases, y(T) is temperature independent for

endotherms.] Similar relationships are likely to hold for host–

parasite encounters with comparable search mechanisms, but

others will require adjusting these equations to account for some

of the more specialized methods of host finding (e.g., chemotaxis;

Haas, 2003).

Finally, for species interactions that occur within an ectotherm

host (category IV in the section ‘‘Challenges for parasite thermal

biology-complex life cycles and species interactions’’; Fig. 1C, D),

it is again the interaction of host and parasite metabolism that

determines the overall thermal performance curve. The probabil-

ity of parasite establishment following uptake, as well as the rates

of within-host development and reproduction (Fig. 1C, D), for

example, are all expected to depend on parasite metabolism,

yP(T), and should therefore increase with temperature within the

parasite’s thermal tolerance range. However, each of these

processes may be limited by the availability of resources from

the host (which typically scales with host body mass; Poulin and

George-Nascimento, 2007; Hechinger, 2013; Lagrue and Poulin,

2016), and/or by the strength of the host’s immune response

(which typically increases with temperature and scales with host

metabolism; Raffel et al., 2006; Rohr et al., 2013). As such, higher

temperatures could benefit either the parasite or the host,

depending on the respective strengths of these interacting

processes (Rohr et al., 2013). It is thus reasonable to assume that

the parasite transition rates within hosts would scale positively

with yP(T), scale inversely with yH(T), and would also depend on

host and parasite body mass (MH, MP) in nontrivial ways

(Hechinger, 2013; Rohr et al., 2013; de Leo et al., 2016).

Furthermore, for the same reasons, we expect similar scaling

rules for the impacts of the parasite on host reproduction (b; Fig.
1D) and survival (d; Fig. 1D), and/or for the ability of the parasite

to manipulate its host (not shown in Fig. 1, but see Molnár et al.,

2013a). The precise nature of these scaling rules, however, remains

unclear and is an important avenue for empirical and theoretical

research (see also section 2).
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MTE-based biological null models for temperature effects
on host–parasite dynamics

One practical benefit of the MTE approach is that it allows the

development of biological null models for the overall impacts of

temperature on the population- and community-level dynamics of

hosts and parasites. Such null models differ from (unrealistic) null

models that assume temperature has no effect on the host–

parasite dynamics by (1) summarizing all life cycle transitions,

vital rates, and species interactions in a dynamic host–parasite

model, (2) a priori specifying the likely functional form of each

thermal performance curve (see previous section), and (3)

estimating unknown parameters from MTE scaling rules (see

below; de Leo and Dobson, 1996; Bolzoni et al., 2008; Molnár et

al., 2013b; Dobson et al., 2015). For data-deficient species, this

approach can provide a first approximation of the ways in which

key performance traits (e.g., development, mortality, infection),

and therefore system properties (e.g., R0, phenology, species’

ranges, and the frequency of epidemic outbreaks), are expected to

change with temperature changes.

For example, using an Anderson-May–type host–macropar-

asite model (Anderson and May, 1978) to represent the one-

nematode-one-endotherm-host dynamics in Figure 1B, we obtain

the following expression for R0 (defined as the ‘expected lifetime

reproductive output of a newborn larva’) as a function of

temperature, T (see Appendix S1 for the derivation):

R0ðTÞ ¼ C � hUðTÞ
lUðTÞ þ hUðTÞ

� qHðTÞH
lIðTÞ þ qHðTÞH

; ð3Þ

where C ¼ qHkP/(lP þ dH þ dP) is a temperature-independent

constant summarizing within-host processes (Fig. 1B), lU(T) and
lI(T) are the stage-dependent per capita rates of larval mortality,

hU(T) is the per capita development rate of uninfective parasite

larvae to the infective stage, and qH(T)H is the per capita rate at

which an infective larva encounters hosts (H is host abundance).

Following the MTE arguments in the section ‘‘Thermal perfor-

mance curves and the MTE,’’ we can now also specify a priori

expectations for the functional form of the temperature-depen-

dent parameters hU(T) (SS model), lU(T) and lI(T) (variant of SS

model with rates rising to infinity outside the parasite’s tolerance

range), and qH(T) (e.g., SS model for parasites that actively seek

out endotherm hosts, or a temperature-independent constant for

parasites that wait passively to be ingested by the host), and thus

also R0(T) (equation 3; Molnár et al., 2013b).

Lastly, to fully specify the biological null model, we can use

various MTE-related macroecological generalities to define a priori

parameter expectations for each of the thermal performance curves

[hU(T), lU(T), lI(T), qH(T)] that determine R0(T). The activation

energies (E), inactivation energies (EL, EH), and temperature

thresholds (TL, TH) of both metabolism and derived performance

traits, for example, are expected to vary systematically with

covariates such as habitat, latitude, phylogenetic association, and

trait function (Irlich et al., 2009; Dell et al., 2011; Sunday et al.,

2011). MTE also suggests that these parameters should remain

approximately invariant across different performance traits of the

same organism due to their common dependence on metabolism,

although this hypothesis needs further testing (Brown et al., 2004;

see also section 2). Moreover, the normalization constants h0, lU0
,

lI0, and qH0
H, representing each trait’s average at a reference

temperature T0 (equations 1, 2), can potentially be estimated from

allometric body mass relationships and the trophic level of

parasites (Brown et al., 2004; Hechinger et al., 2011). However,

most empirical MTE relationships have only been established for

free-living species to date (Brown et al., 2004; McCoy and Gillooly,

2008; Dell et al., 2011; Sunday et al., 2011), so that parasitologists

will initially need to refer to those studies when constructing host–

parasite null models. Few data exist on the activation energies and

other thermal parameters of parasites (but see Poulin, 2006;

Morley, 2011, 2012), but it is our hope that this article motivates

experimentalists to begin filling these gaps and deriving macro-

ecological generalities specifically for the thermal performance of

parasites (sections 2, 3).

For our example biological null model (Figs. 1B, 3; equation 3),

we could estimate the normalization constants h0, lU0
, lI0, and

qH0
H through allometric body mass relationships. However, we

will assume for the purpose of a simple example that these

parameters, as well as the temperature thresholds TL and TH,

have been previously established as h0¼ 0.03 d�1, lU0
¼ lI0¼ 0.06

d�1, and qH0
H¼ 0.01 d�1, with T0¼ 22.5 C, TL¼ 10 C, and TH¼

35 C. Furthermore, we assume that no other information exists on

the temperature dependence of development, mortality, or

infection, so we set the unknown activation and inactivation

energies of all three traits to the approximate interspecific means

of free-living species, E¼ 0.65 eV, EL¼�5 3 0.65 eV¼�3.25 eV,

and EH¼ 53 0.65 eV¼ 3.25 eV (Molnár et al., 2013b). {For this,

it should be noted that some publications (e.g., Kooijman, 2010;

Molnár et al., 2013b) report positive rather than negative values

of EL, but that this is only due to the use of a version of the SS

model where the sign of the term exp[Ey
L/k(1/Ty

L � 1/T)] in

equation 2 is reversed (i.e., exp[Ey
L/k(�1/Ty

Lþ 1/T)], rather than

due to biological variation in the low-temperature inactivation

energy.} The resulting expected temperature dependency of R0(T)

(Fig. 3) is of course fraught with large uncertainties and has

limited predictive capability. Nevertheless, such biological null

models can provide initial rules of thumb for expected climate

change impacts on understudied and newly emerging parasites,

and they can provide guidance to researchers regarding the system

components that are the most critical to understand for

improving the accuracy of climate change predictions (see section

3). Targeting these sensitive parameters in subsequent laboratory

and/or field experiments can then iteratively improve the model to

obtain increasingly accurate species-specific forecasts (Restif et

al., 2012; Urban et al., 2016).

Contrasting the MTE approach and linear degree-day

models: key differences

One main reason for estimating thermal performance curves

and synthesizing this information in host–parasite models is to

predict the impacts of climate warming on host–parasite systems.

To accomplish this, the MTE approach emphasizes (1) a clear

separation of mechanisms both at the trait level (development,

mortality, etc.) and at the underlying physiological level

(activation and inactivation energies, etc.); (2) the synthesis of

these mechanisms in dynamical host–parasite models to capture

the net effect of multiple positive and negative temperature

dependencies; and (3) the importance of capturing the nonline-

arity of thermal performance curves across the organism’s entire

thermal niche. An alternative approach that is frequently used to

describe thermal performance and to infer potential climate
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change impacts, but which does not adhere to the above

principles, is to use a linear degree-day model. In this section,

we highlight the consequences of these differences, and refer the

reader to Moore and Remais (2014) for a general discussion on

the limitations of degree-day models.

Like the BA and SS models, degree-day models aim to describe

the thermal dependence of performance traits. However, in

contrast to the MTE-based approaches, degree-day models assume

a linear relationship between performance and temperature (T),

and they are typically formulated only for a subset of the life cycle

processes that determine the host–parasite dynamics (e.g., just for

larval development, h, but ignoring mortality effects, lx):

hðTÞ ¼ DD�1ðT� CTminÞ forCTmin ,T,Tmax

0 otherwise
;

�
ð4Þ

where the parameter DD (the inverse of the slope) can be

interpreted as the number of degree-days required to complete

development, CTmin is the minimum temperature needed for

development, and Tmax is an upper temperature threshold set below

CTmax to avoid overestimating development at high temperatures

(Trudgill et al., 2005; Moore and Remais, 2014). Once parameter-

ized, degree-day models are typically used to estimate whether a

parasite could complete one or more life cycle stages in a given

location under various climate scenarios, now or in the future

(Kutz et al., 2005; Zhou et al., 2008; McCreesh and Booth, 2013),

by integrating equation 4 over the temperatures experienced by the

parasite in that location.

The validity of this approach depends on a variety of

questionable assumptions (Moore and Remais, 2014), and in

particular on the degree to which the linear model in equation 4

approximates the inherently nonlinear temperature dependence of

organism performance. At intermediate temperatures, this ap-

proximation can be fairly accurate (but see, e.g., Kilpatrick et al.,

2008), perhaps because the exponential Arrhenius relationship is

somewhat linearized by enzyme inactivation near the lower and

FIGURE 3. Biological null model for the temperature-dependent basic reproductive number R0(T) of a specialist nematode with an endotherm
definitive host, a mandatory free-living stage during which larvae need to develop to infectivity, and active infection. (A–C) Null models for the
underlying temperature dependency of free-living larval development (hU), mortality (lU, lI), and host encounter (qH). (D) Resultant null model for
R0(T) (equation 3), with a diamond marking the temperature Tpk at which R0(T) is maximized, and the area-under-the-curve AUC(R0(T)) shaded gray
(see section 3; Fig. 4). Note that R0(T) is symmetric despite the asymmetric shape of its underlying components, hU(T), lU(T), lI(T), and qH(T), because
the temperature dependencies of the positive (development, host encounter) and negative (mortality) influences on R0(T) cancel each other out at
intermediate temperatures under the null assumption of equal activation energies, inactivation energies, and temperature thresholds for development,
mortality, and encounter rates (see equation 3).
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upper thermal thresholds (Fig. 2; Charnov and Gillooly, 2003;

Trudgill et al., 2005). However, this assumption becomes

problematic at temperatures near CTmin, especially when CTmin

is estimated by linear extrapolation from the apparently linear

relation at intermediate temperatures, as is commonly done

(Trudgill et al., 2005). Such extrapolations may overestimate or

underestimate the true CTmin, depending on the temperature

range of the available data (Moore and Remais, 2014; Pawar et

al., 2016) and the true value of the inactivation energy EL, which

determines the degree of nonlinearity at low temperature extremes

(Fig. 4). Similar issues arise in the choice of Tmax, which can only

crudely approximate the effects of high-temperature inactivation

(Moore and Remais, 2014). However, accurate threshold esti-

mates are critical for predicting changes in phenology and range

(Molnár et al., 2013b) and the effects of increasingly frequent

extreme temperature events (Vasseur et al., 2014). As such, we

recommend characterizing the entire thermal performance curve

of traits by using transfer experiments to capture low performance

at temperature extremes (section 3; Régnière et al., 2012), rather

than relying on a linear approximation of a nonlinear process that

can result in threshold biases in unknown directions.

Moreover, we caution that degree-day models are usually

limited to a subset of the processes determining the host–parasite

dynamics, rendering them uninformative regarding climate

change impacts at the population level. A developmental

degree-day model, for example, may indicate a substantially

decreased development time for nematode eggs to reach the

infective L3 stage at increased temperatures (Jenkins et al., 2006;

Kutz et al., 2013), but the resulting benefits for the parasite could

easily be negated by increased mortality during development or

at the L3 stage (Fig. 3; equation 3). Whether a temperature

change causes a decrease or increase in R0 (or other disease

metrics) can therefore only be unraveled with an approach that

considers the entire life cycle (cf. above), and not by models that

omit parts of the life cycle. The predictions of developmental

degree-day models should thus be interpreted with extreme

FIGURE 4. Linear degree-day models may overestimate or underestimate the minimum temperature at which development is possible. To illustrate
this, we simulated a nonlinear thermal performance curve of development (dotted line), using the Sharpe-Schoolfield model with parameters h0¼0.03 d�1

(at T0¼ 24.5 C), E¼ 0.65 eV, EH¼ 7.3 eV, TL¼ 5 C, TH¼ 29 C, and low-temperature inactivation energies EL¼�7.3 eV (A) and EL¼�3.15 eV (B). We
then assume that Researcher 1 collected development rate data from 5 C (¼TL) up to 25 C at a 2 C resolution (filled and open circles), and that
Researcher 2 collected data only at 7, 9, 11, and 13 C (filled circles only). We further assume that neither researcher employed transfer experiments to
measure the extremely slow development below TL ¼ 5 C. Rather, linear (degree-day) models were fit to estimate the minimum temperature at which
development becomes impossible, CTmin (dashed and solid lines). Such extrapolations can over- or underestimate CTmin depending on the range of
temperatures for which data are available (A), and the steepness of the inactivation drop-off near TL (contrast solid lines in A and B).
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caution and at best be considered an index for potential climate

change impacts.

SECTION 2: DATA GAPS

Comprehensive temperature profiles that include all or most

performance traits that influence the host–parasite dynamics can

be used for forecasting range changes and other changes to the

host–parasite dynamics (Ryan et al., 2015; Rose et al., 2016), but

exist only for a few select diseases, such as malaria (Mordecai et

al., 2013) or Lyme disease (Ostfeld and Brunner, 2015). For some

others, thermal performance has been quantified for parts of the

parasite’s thermal niche (e.g., excluding thresholds) and/or for

parts of its life cycle (e.g., development only), but detailed

quantitative information is lacking for the vast majority of

species. Developing a comprehensive thermal database for

parasites will be challenging, but the MTE approach suggests

guidelines for how to fill existing data gaps in systematic ways that

maximize information, both for species-specific and for broad-

scale interspecific predictions.

First, the MTE suggests that the activation and inactivation

energies of metabolism (y) and metabolism-dependent traits (e.g.,

development, h; mortality, l; movement speed, v) should be

approximately similar in a given individual (e.g., Ey ’ Eh ’ El ’

Ev; Brown et al., 2004). However, this is almost certainly an overly

simplistic assumption, because different physiological processes

are likely accomplished by different suites of potentially rate-

limiting enzymes, in addition to the shared suite of metabolic

enzymes (Seebacher et al., 2003; Trudgill et al., 2005). Indeed,

there is evidence that activation energies vary according to the

physiological function of a particular process (Dell et al., 2011).

Determining the cases in which the MTE assumption of equal

activation energies across metabolically dependent traits within a

given individual holds true, and whether deviations are systematic

and can be predicted from covariates, would radically simplify

data needs. As such, metabolic data should be collected alongside

the thermal performance curves of different traits, taking care to

separate out individual contributions to composite terms (e.g.,

parasite establishment as a composite of parasite infectivity and

host resistance to infection; see section 2) to ensure valid among-

trait comparisons. Deviations from the BA and SS models are

also possible (e.g., thermostable zones where performance does

not vary with temperature; Morley, 2012) and should be carefully

documented to determine how often, in what direction, and under

what conditions such deviations should be expected.

Second, the MTE suggests that within- and among-species

variation in activation energies, inactivation energies, and

temperature thresholds of thermal performance curves might be

predictable from variables such as habitat, latitude, and

phylogenetic association (Irlich et al., 2009; Munch and Salinas,

2009; Dell et al., 2011; Sunday et al., 2011; Nilsson-Ortman et al.,

2013; Pawar et al., 2016). In free-living species, such relationships

are well documented and have been used to derive broad-scale

predictions for climate change impacts on unicellular organisms,

insects, reptiles, and amphibians (Deutsch et al., 2008; Dillon et

al., 2010). Some indication exists for similar relationships in

parasites (e.g., latitudinal trends in the temperature sensitivity of

trematode infectivity and cercaria emergence; Poulin, 2006;

Morley and Lewis, 2015). However, broader systematic analyses

are lacking, largely because of insufficient data coverage.

Similarly, it is unclear how and to what extent mass scaling laws

can be used to accurately estimate normalization constants of

parasite performance (y0 in equations 1 and 2), and in particular

whether the metabolic rates of internal parasites should scale with

parasite mass, host mass, or some combination of these

(Hechinger, 2013; de Leo et al., 2016). We recommend that

parasitologists systematically select representative species to

broaden the coverage of latitudes, habitats, and other covariates

that may influence thermal performance to establish macro-

ecological generalities like those found in free-living species.

Third, the MTE also provides possible solutions for modeling

complex biological responses to temperature variability. For

example, organisms often exhibit thermal acclimation responses

following a temperature shift, resulting in altered thermal

performance curves (Angilletta, 2009; Dowd et al., 2015). MTE

suggests that parasites might generally have faster acclimation

responses than their hosts due to their smaller size, which might

give parasites an advantage over their hosts in variable-

temperature conditions (Raffel et al., 2013; Rohr et al., 2013).

Such acclimation effects can be incorporated into the BA or SS

models by allowing key parameters like E and TH to vary as

functions of the organism’s acclimation temperature (Rohr et al.,

2013). Moreover, many organisms, including parasites, also

possess adaptive responses to predictable diurnal or seasonal

shifts in temperature (Martinez-Bakker and Helm, 2015), and

these complexities might potentially be described using similar

model extensions. However, we currently lack data on the rate,

magnitude, and nature of thermal acclimation responses for most

parasites (but see Altman et al., 2016), and more will be needed

before we can test for systematic patterns.

Lastly, we note that much of the data that currently exist on the

thermal performance of parasites have been reported in idiosyn-

cratic ways, making interspecific comparisons difficult. Develop-

ment time, for example, has been reported as ‘time when the first

larva of an experimentally reared cohort reached a target stage’ or

as the ‘time when 50% [or some other percentage] of the cohort

reached that stage’ (e.g., Young et al., 1980; Kutz et al., 2001).

More fundamentally, many studies report apparent development

times (i.e., the development time distribution of those individuals

that lived long enough to complete development), sometimes

augmented by information on apparent mortality (i.e., the

percentage of individuals that completed development; Gibson,

1981; van Dijk and Morgan, 2011). Other studies have estimated

the real development time and mortality rate distributions (i.e.,

including those individuals that die before completing develop-

ment) by statistically disentangling these rates from the time series

of cohort development/mortality (e.g., Smith, 1990). These

approaches are neither equivalent nor will they lead to

comparable estimates of temperature sensitivity, because both

apparent development and apparent mortality are in reality

composite measures of the real rates of development and

mortality (Braner and Hairston, 1989). As a consequence,

apparent development times will typically be more temperature

sensitive (higher E) than real development times, while apparent

mortality (as defined above) will typically be less temperature

sensitive than the real mortality rate (Fig. 5; Appendix S2).

Similar issues are likely to arise for any composite measure of a

life cycle transition. For example, parasite establishment (i.e., the

‘proportion of parasites that establish within a host’) is sometimes

interpreted as a measure of parasite performance and sometimes
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as a measure of host resistance, whereas in reality it is a composite

metric influenced by both parasite infectivity and host resistance

to infection (Rohr et al., 2013). Misinterpreting the thermal

response of composite parameters as the thermal response of a

single mechanism can substantially bias climate change impact

predictions (Fig. 5). To avoid such issues and ensure compara-

bility between different studies, we recommend statistically

separating composite processes where possible (see also section

3), and reporting the full empirical distribution (means, variances,

skewness, etc.) for each process (e.g., development and mortality;

parasite infectivity and host resistance; etc.) and all temperature

treatments. In contrast to composite parameters, the resulting

thermal performance curves can be input into dynamic host–

parasite models in a straightforward manner (Fig. 1).

SECTION 3: A PRACTICAL GUIDE

Here we provide guidelines for collecting high-quality thermal

performance data on the life cycle of parasites, including how to

decide which performance traits to prioritize for measurement,

experimental design tips, and analytical methods for fitting the

BA and SS models to data.

Deciding which performance traits to prioritize

(perturbation analyses)

Because the overall impacts of climate change on parasitism

depend on multiple interacting nonlinear thermal performance

curves (Figs. 1, 3), it is generally advisable to measure the thermal

responses of as many life cycle transition rates, vital rates, and

interaction traits as possible for a given species of interest

(sections 1, 2). However, funding and logistical constraints force

most researchers to prioritize experiments and decide a priori the

traits on which to focus. One strategy to setting such research

priorities is to first develop a biological null model for the overall

host–parasite dynamics that is parameterized with literature

estimates for known parameters and using MTE scaling rules

for unknown parameters (section 1). Perturbation analyses (i.e.,

sensitivity or elasticity analyses) can then inform the researcher

about the traits that are likely to have the greatest effects on the

temperature dependence of the host–parasite dynamics and

should therefore be targeted in experiments (Urban et al., 2016).

The main difficulty with the perturbation analysis of temper-

ature-dependent host–parasite dynamics is that the respective

importance of different traits may vary between temperatures

(Fig. S2). The classical approach to such perturbation analyses

therefore determines the additive contribution of each trait to the

temperature sensitivity of R0(T), dR0/dT, separately for each

possible temperature, using the chain rule of derivation (Fig. S2;

Rogers and Randolph, 2006; Mordecai et al., 2013). While this

approach can be extended to calculate the additive contributions

of each trait’s underlying thermal parameters (y0, E, E
L, EH, T0,

TL, TH; equation 2) to dR0/dT, such analyses become difficult to

interpret with a large number of traits and parameters. We

therefore suggest an alternative approach that summarizes key

properties of R0(T) in two numerical values that are amenable to

the simpler methods of scalar perturbation analysis (de Kroon et

al., 2000; Caswell, 2001).

First, we consider the area-under-the-curve of R0(T) (Fig. 3)

AUC
�
R0ðTÞ

�
¼
Z ‘

0

R0ðTÞdT; ð5aÞ

which is proportional to the average parasite R0 across all

possible temperatures (note that temperature is measured in

Kelvin, which is why the integration limit starts at zero).

Second, we consider the skewness of R0(T), which determines

whether R0 peaks at a relatively high (left-skewed), intermediate

(bell-shaped), or low (right-skewed) temperature within the

parasite’s thermal niche. This skewness is not only a key

determinant of how performance varies among individuals in a

stochastic environment (Dowd et al., 2015), but it also determines

whether infection risk will likely increase or decrease in different

parts of a parasite’s geographic range with climate change (Altizer

et al., 2013; Molnár et al., 2013b). With malaria, for example,

some studies suggested a left-skewed R0(T) that peaks at about 31

C, while others suggested a bell-shaped R0(T) peaking at about 25

C (Mordecai et al., 2013). The consequences of these differences

are dramatic, as a 31 C peak implies an increased infection risk

across almost all of the parasite’s current range with climate

change, whereas a 25 C peak implies a decreased infection risk in

many areas that will be getting too hot for the parasite to survive

(Altizer et al., 2013; Mordecai et al., 2013). As such, we define the

metric

s
�
R0ðTÞ

�
¼ Tpk � TL

TH � TL
; ð5bÞ

which shows the relation of the temperature where R0(T) is

maximized (Tpk) to the (known or assumed) lower and upper

temperature thresholds TL and TH, with s , 0.5 indicating right-

FIGURE 5. Contour lines showing the apparent activation energy of
development (Eh

0) that would be estimated for different combinations of
the true activation energy of development (Eh) and the activation energy
of mortality (El) if the influence of mortality is not correctly separated
out. Note that the apparent activation energy of development Eh

0

consistently overestimates the true activation energy Eh. Results were
derived following the model of Braner and Hairston (1989), assuming
normally distributed development times with a temperature-dependent
mean, M(T), that is described by the BA equation (equation 1) and a
temperature-independent variance r2 around this mean, as well as a
temperature-dependent mortality rate l(T) that is also described by the
BA equation. Parameter values are M(T0)¼ 10 d, l0(T0)¼ 0.5 d�1, T0¼ 20
C, and r2 ¼ 10 d2. For discussion of the underlying mechanisms causing
these patterns, see Appendix S2.
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skewed R0(T), and s . 0.5 indicating left-skewed R0(T). We then

calculate how both AUC(R0(T)) and s(R0(T)) change in response

to a proportional change in any of the model parameters that

determine the temperature sensitivity of the underlying perfor-

mance traits. Formally, this approach is known as an elasticity

analysis (de Kroon et al., 2000).

Suppose, for example, we are interested in studying the thermal

dynamics of an environmentally transmitted nematode with an

endotherm definitive host (e.g., Fig. 1A, B), for which the thermal

performance thresholds of free-living larvae (TL¼ 10 C, TH¼ 35

C) and their rates of development, mortality, and infection (h0 ¼
0.03 d�1, l0 ¼ 0.06 d�1, q0 ¼ 0.01 d�1, respectively) at a reference

temperature (T0¼22.5 C) are approximately known. However, no

information exists on the temperature sensitivity (i.e., the

activation and inactivation energies) of these traits. A biological

null model that incorporates these knowns and unknowns can

then be obtained by specifying thermal performance curves for

development, mortality, and infection as outlined in section 1,

fixing known parameters (h0, l0, q0, T0, T
L, TH) to their measured

values, setting all activation and inactivation energies to their

interspecific means (E¼ 0.65 eV,�EL¼EH¼ 3.25 eV; Fig. 3), and

embedding these curves in an appropriate model of the host–

parasite dynamics. Here, we illustrate this approach using the

ordinary differential equation framework of Anderson and May

(1978) to represent the host–parasite dynamics (see section 1; Fig.

3). However, note that researchers should in general explore

several alternative model structures (e.g., inclusion of develop-

mental delays, or increased resolution of life stages by explicitly

including the L1, L2, L3 stages, etc.) to ensure that the

conclusions regarding research priorities are unaffected by

uncertainties about model structure (Babtie et al., 2014).

Both the classical approach and our suggested approach show

that larval mortality is the most critical parameter influencing the

thermal dynamics of this parasite, followed by host infection and

development (Figs. 6, S2; see Appendix S3 for the corresponding

R-codes). In addition, we observe that the baseline values h0, l0,

and q0 are by far the most critical influence on AUC(R0(T)) (Fig.

6A), whereas the activation energies Eh, El, and Eq determine

changes in the skewness of R0(T) (Fig. 6B; see also Molnár et al.,

2013b). The inactivation energies, by contrast, have relatively

small effects on either metric (Fig. 6). Understanding the

temperature dependence of mortality, and specifically l0 and

El, should therefore be prioritized in this particular system. Once

these parameters are determined accurately, these perturbation

analyses should be repeated to determine the next priority, as the

ranking of parameter elasticities might change as parameter

values get updated (de Kroon et al., 2000).

For more complex life cycles, such perturbation analyses would

proceed in an analogous way and could further be augmented by

elasticity loop analyses (de Kroon et al., 2000), which can be used

to determine the most critical life cycle paths and hosts in

parasites that can use two or more alternative paths (hosts) to

complete their life cycles (e.g., alternative mammalian hosts for

Schistosoma mansoni; Fig. 1C). Similarly, researchers may be

interested in more complex effects of climate change (e.g.,

phenology and range changes), in which case more complex null

models or objective functions (e.g., incorporating seasonal or

spatial dynamics) might be required. However, regardless of

complexity, the same principles remain, allowing researchers to

use a priori perturbation analyses to determine maximally

informative research directions.

Experimental design considerations

Selecting temperature treatments: One of the most critical

decisions is the choice of an appropriate number and range of

temperature treatments. The activation energy E of a thermal

performance curve, for example, can theoretically be estimated

from a minimum of four distinct temperature treatments, located

within the intermediate thermal range of the organism (i.e.,

between TL and TH), using the BA model (equation 1). However,

such estimates are usually fraught with inaccuracy and impreci-

sion, and they may also be systematically biased if some

temperature treatments are inadvertently chosen too close to TL

or TH (Fig. 7A; Pawar et al., 2016). Indeed, it is possible to obtain

unrealistic negative estimates of E if all or most of the selected

temperature treatments are above Tpk (Figs. 2, 7A). To avoid

these issues, and because of the importance of temperature

thresholds in determining range changes and other climate change

impacts (Deutsch et al., 2008), we instead recommend character-

izing the full thermal performance curve where feasible. In cases

where this is not feasible, we suggest following the experimental

design recommendations of Pawar et al. (2016, p. E50) to

minimize biases and maximize precision. As thermal performance

is driven by different parameters in the lower (EL, TL),

intermediate (E, y0), and upper (EH, TH) ranges of the parasite’s

thermal niche (equation 2), we recommend sampling at least four

distinct temperatures in each of these three regions (12

temperatures total) for full characterization of a thermal

performance curve. Smaller numbers of temperature treatments

might be sufficient to characterize a partial thermal performance

FIGURE 6. Perturbation analysis of an MTE-parameterized biological
null model for a nematode with an endotherm host, a mandatory free-
living stage, and active host infection. Baseline parameters of development
(h), mortality (l), and encounter (q) rates are set as h0¼0.03 d�1, l0¼ 0.06
d�1, q0¼ 0.01 d�1 at T0¼ 22.5 C, and as E¼ 0.65 eV,�EL¼EH¼ 3.25 eV,
TL ¼ 10 C, TH ¼ 35 C for all three traits; see section 3 for details. The
elasticities of (A) the area-under-the-curve of R0(T) and (B) the skewness
measure s(R0(T)) (equation 5) are shown with respect to the normalization
constant (y0), activation energies (E), and the low- and high-temperature
inactivation energies (EL, EH) of development (black), mortality (dark
gray), and host encounter (light gray). The effect of a 20% increase (solid)
or decrease (hatched) is shown for each parameter.
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curve (e.g., Fig. 7B), but this might make it impossible to estimate

some SS model parameters (e.g., TL and EL in our empirical

example; Appendix S4). One benefit of this sampling strategy is

that its high resolution near the lower and upper temperature

thresholds TL and TH allows the (potentially steep) performance

drop-offs caused by EL and EH to be captured. If TL and TH are

unknown, pilot studies and/or literature comparisons with related

species should be used to determine appropriate sampling regions

a priori. By definition, TL and TH are generally close to, but a few

degrees higher or lower than, an organism’s critical thermal

minimum (CTmin) or maximum (CTmax), respectively (van der

Have, 2002).

In addition to these fixed-temperature treatments, we also

recommend transfer experiments where the organism is exposed

to two or more temperature treatments successively (e.g.,

Régnière et al., 2012; Altman et al., 2016). Such experiments

can approximate the effects of natural temperature variability and

can, for example, be used to estimate thermal acclimation

responses (Raffel et al., 2013; Altman et al., 2016). Moreover,

transfer experiments can help estimate parameters that might

otherwise be obscured by high mortality (Régnière et al., 2012).

For example, Régnière et al. (2012) found that larval development

was difficult to measure at temperatures near TH because larvae

died before they could complete development. They solved this

problem by starting larvae at the high target temperature, before

transferring them to a temperature well below TH. This allowed

completion of development but at a faster overall rate than would

be expected for the low-temperature treatment due to the high-

temperature head start (Régnière et al., 2012). Teasing apart such

contributions is critical for estimating parasite performance under

variable temperatures, and in particular, for understanding the

likely impacts of increasingly frequent extreme weather events

(Kutz et al., 2009; Vasseur et al., 2014).

Avoiding pseudoreplication: Logistical and other limitations

usually require a trade-off between the number of distinct

temperature treatments and the number of replicates per

treatment in an experiment. Due to the importance of selecting

as many temperature treatments as possible (see above), we

recommend prioritizing the former if necessary but still suggest

including at least two true replicates per temperature treatment to

guard against random events skewing results, especially near TL

and TH, where strong nonlinearities and increased among-

individual variance might affect the accuracy and precision of

estimates.

True replication of temperature treatments can be challenging

when, for example, only a few incubators are available. One

solution to this dilemma is to increase replication by conducting

measurements in multiple temporal blocks, with each incubator

randomly assigned to a new temperature treatment in subse-

quent blocks (e.g., Altman et al., 2016). This strategy can be

particularly effective when measurements can be obtained

quickly (e.g., metabolism, respiration, muscle performance) but

poses a challenge for measuring host or parasite performance

traits that need to be measured over extended time periods (e.g.,

rates of development or infection). One solution in this latter

case is to purchase or construct multiple low-cost incubators to

obtain sufficient replication in a single temporal block (Raffel et

al., 2013; Greenspan et al., 2016). One can also improve the

precision of parameter estimates by testing multiple organisms in

each incubator simultaneously, and then account for pseudo-

FIGURE 7. Performance curve model fits to Schistosoma mansoni
cercaria swimming speed data. (A) Log-transformed S. mansoni cercaria
swimming speed data, with the BA model once fit only to data below Tpk

(13–25 C; filled circles and dashed line; E¼ 0.608 eV), once fit only to data
above Tpk (28–34 C; open circles and dotted line; E¼�1.291 eV), and once
fit to the full data set (13–34 C; filled and open circles, solid line; E¼ 0.162
eV). The latter two BA model fits underestimate the activation energy E
due to influence of high-temperature inactivation, illustrating the
importance of selecting appropriate temperature treatments and the
potential to obtain unrealistic negative estimates of E (cf. section 3; Pawar
et al., 2016). (B) Comparison of the BA model (fit to only the lower
temperatures, 13–25 C; dashed line; E ¼ 0.608 eV), and the Sharpe-
Schoolfield model (fit to the full data set, solid line; E ¼ 0.698 eV). Note
that the activation energy estimates are similar but nonetheless differ due
to the additional information used in the fit of the SS model.
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replication post-hoc by including ‘incubator’ as a random effect

in subsequent analyses (e.g., Altman et al., 2016).

Individual- vs. cohort-based sampling to quantify waiting-time

processes: Many performance traits are waiting-time processes,

such as ‘time to complete development’ or ‘time to mortality.’ The

associated rates for these processes (e.g., hU and lU in Fig. 1B) are

best estimated from time-to-occurrence data from individual

parasites followed over time (‘individual-based sampling’).

However, it is often more convenient to raise parasites as groups

(‘cohort-based sampling’), which typically results in so-called

stage-frequency data (the proportions of parasites in different life

stages, such as developmental stages, as a function of time; e.g.,

Young et al., 1980; Kutz et al., 2001). If only a single process is

studied, such as the natural mortality of free-living nondeveloping

parasite stages (e.g., nematode L3, or trematode miracidia and

cercariae; Fig. 1), mortality rates can be estimated from either

cohort or individual data using standard survival analyses

(Lebreton et al., 1993). However, most life cycle transitions

involve multiple simultaneous processes that cannot be studied in

isolation from one another (Fig. 1). As outlined in section 2,

failure to disentangle composite processes can lead to systematic

biases when estimating the thermal sensitivity of host and parasite

performance traits (Fig. 5). While advanced statistical methods

are available to disentangle multiple simultaneous processes from

cohort-based stage-frequency data (e.g., Manly, 1990; de Valpine

and Knape, 2015), loss of information and increased model

complexity lower the precision and accuracy of parameter

estimates (Régnière et al., 2012). In contrast, individual-based

sampling makes it relatively simple to separate interacting

processes like parasite development versus mortality or parasite

infectivity versus host resistance, leading to improved parameter

estimates (Régnière et al., 2012). We therefore recommend an

individual-based sampling approach whenever practicable, and

post-hoc statistical separation of composite processes from stage-

frequency data when cohort-based sampling must be employed.

Fitting the BA and SS models to thermal performance data

The parameters of the SS model can be determined by fitting

the model to thermal performance data using maximum

likelihood techniques (Xiao et al., 2011; Régnière et al., 2012).

Similar to traditional nonlinear least-squares regression, maxi-

mum likelihood seeks to find those parameter values that

maximize model fit to the data. However, in contrast to least-

squares regression (which implicitly assumes a normally distrib-

uted error), maximum likelihood allows flexibility regarding the

error distribution of the data (Hilborn and Mangel, 1997).

Régnière and Powell (2003) argued that the error distribution of

thermal performance data (expressed as ‘observed/expected’)

should generally be lognormal because (normally distributed)

biological parameters (e.g., the activation energy E) appear within

exponential terms in the BA and SS models. Following these

arguments, Régnière et al. (2012) developed a formal likelihood

approach for estimating the parameters of the SS model, which

we illustrate in Appendix S4 using an example data set from

Schistosoma mansoni cercaria swimming speeds across eight

temperatures (Fig. 7B). To aid other researchers, we also provide

the R code used in this example for parameter estimation, as well

as example code that allows for the addition of potential random

effects in the sampling design (e.g., populations raised in multiple

incubators; Appendix S4). However, we also note that these

likelihood functions and the corresponding codes may have to be

adjusted to the specifics of an experiment, for example, to account

for noncontinuous observations in long-running experiments

(Régnière et al., 2012) or for error distributions that are not

lognormal (Xiao et al., 2011).

In situations where the data are restricted to the ‘linear’ portion

of the thermal performance curve (Fig. 2), the activation energy E

can still be estimated by fitting the log-transformed BA model to

log-transformed performance data using linear regression (Fig.

7A). As with the above outlined likelihood approach for the SS

model, this approach implicitly assumes a lognormal error

distribution (as opposed to a nonlinear least-squares regression

on untransformed data), and it should be ensured that this error

distribution matches the error structure of the data (Xiao et al.,

2011). Moreover, it is critical that only data points from within

the ‘linear’ portion of the thermal performance curve are included

when fitting the BA model, because the nonlinearity operating at

low and high temperatures may bias activation energy estimates

otherwise (Fig. 7A; Pawar et al., 2016).

CONCLUSIONS

Most researchers studying climate impacts on parasites are

focused on generating predictions for one or a few specific target

species. The guidelines we suggest herein will help increase the

accuracy and power of such predictions. They will also ensure a

minimum level of standardization to facilitate interspecific

comparisons and the development of biological null models for

data-deficient species. We fully expect that some species and

patterns will not conform to current MTE expectations, and

parasites in particular have a unique lifestyle that might lead to

interesting deviations (Hechinger et al., 2011). However, it is such

exceptions that lead to the modification of current paradigms (del

Rio, 2008). Ultimately, the data must decide whether the thermal

performance of hosts and parasites is most appropriately

described by the SS and/or BA models, and any significant

deviations should be documented carefully to inform the next

generation of thermal host–parasite models. Nevertheless, the

MTE provides a pragmatic way forward for improving both our

theoretical understanding of the thermal biology of parasitism

and our ability to predict climate impacts on specific target

species.
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