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APPROXIMATING VARIANCE OF DEMOGRAPHIC PARAMETERS USING THE

DELTA METHOD: A REFERENCE FOR AVIAN BIOLOGISTS

LARKIN A. POWELL
1

School of Natural Resources, 419 Hardin Hall, University of Nebraska-Lincoln, Lincoln, NE 68583-0974

Abstract. Avian biologists routinely estimate
sampling variance for parameter estimates such as
daily nest survival, fecundity, annual survival, and
density. However, many biologists are not certain of
methods to derive sampling variance for parameters
when survival rates change temporal scales. Similar
methods are needed to obtain sampling variance
when biologists combine parameter estimates to
calculate an indirect demographic parameter, such
as population growth rate. The delta method is
a useful technique for approximating sampling
variance when the desired demographic parameter
is a function of at least one other demographic
parameter. However, the delta method is rarely
taught in most graduate-level biology or ecology
courses, and application of this method may be
discouraged by seemingly daunting formulas in
reference books. Here, I provide five examples of
sampling variance approximations for common
situations encountered by avian ecologists, with
step-by-step explanations of the equations involved.

Key words: delta method, demographic analyses,
sampling variance approximation.

Aproximación de la Varianza para
Parámetros Demográficos Utilizando el
Método Delta: una Referencia para Biólogos
de Aves

Resumen. Los biólogos que estudian aves estiman
la varianza muestral para los estimados de paráme-
tros como la supervivencia diaria, la fecundidad, la
supervivencia anual o la densidad. Sin embargo,
muchos biólogos no tienen la certeza sobre los
métodos adecuados para derivar la varianza muestral
para los parámetros cuando las tasas de super-
vivencia cambian de escala temporal. Métodos
similares son requeridos para obtener la varianza
muestral cuando se combinan estimados de paráme-
tros para calcular un parámetro demográfico indir-
ecto como la tasa de crecimiento poblacional. El
método delta es una técnica útil para aproximar la
varianza muestral cuando el parámetro demográfico
deseado es función de por lo menos un otro
parámetro demográfico. Sin embrago, el método

delta es enseñado en raras ocasiones en cursos de
biologı́a o ecologı́a de nivel de post-grado, y la
aplicación de este método en muchos casos es
desincentivada debido a las formulas aparentemente
complicadas que aparecen en libros de referencia.
Aquı́ brindo cinco ejemplos para la aproximación de
la varianza muestral en situaciones a las cuales se
pueden enfrentar comúnmente los ecólogos de aves
con explicaciones paso a paso de las ecuaciones
involucradas.

Avian biologists routinely need to estimate standard
deviation, standard error, confidence intervals, or
other measures of sampling variance for parameter
estimates such as daily nest survival, fecundity,
annual survival, and density. Software packages,
such as program MARK (White and Burnham
1999) and program DISTANCE (Buckland et al.
2001), provide estimates of standard error (SE;

SÊ ĥh
� �

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vârar ĥh
� �r

). Traditional statistical software

packages also provide direct estimates of sampling
variance. Thus, when a parameter is estimated
directly from raw data and can be reported in the
temporal scale in which the parameter was estimated,
it is straightforward to report estimates of sampling
variance.

Variance estimates become problematic when
biologists are required to: (1) change temporal scales
(e.g., extrapolate daily nest survival estimates to 24-
day nest success estimates), (2) combine demographic
parameter estimates to indirectly calculate a demo-
graphic parameter (e.g., multiply nest success and
clutch size to calculate fecundity), or (3) average
demographic parameters across years (e.g., mean of
three years of density estimates). In all of these cases,
the new demographic parameter is a function of at
least one other demographic parameter; thus, the
sampling variance of the new parameter is also
a function of the sampling variance of the former
parameters (Williams et al. 2002).

The delta method is a useful technique for
approximating sampling variance in situations such
as those described above (Seber 1982). Although the
delta method is not new, few ecologists are exposed
to this method, and few use it to approximate
sampling variances. The delta method is not lacking
in proponents; recently, Hilborn and Mangel
(1997:58–59), Williams et al. (2002:736), Skalski et
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al. (2005:570–571), Cooch and White (2006:B1–B23),
and MacKenzie et al. (2006:66, 73–75) have referred
biologists to the delta method. However, these
references provide a set of potentially daunting
source equations that include partial derivatives,
and biologists are left with few step-by-step examples
to follow to apply the delta method. Thus, despite
recent suggestions to use the delta method to
approximate sampling variance, avian biologists
continue to publish critical comparisons without
estimates of sampling variance to guide decision-
making or hypothesis evaluation.

The goal of this paper is to provide a sample of
variance approximations for common parameters
calculated by avian ecologists. I provide several case
examples to serve as guides for potential applications
of the delta method to avian data. Here, I focus
specifically on sampling variance, resulting from
estimating demographic parameters from a sample
of an avian population. White et al. (1982) and
Franklin et al. (2000) provide valuable overviews of
the difference between sampling and process varia-
tion.

THE DELTA METHOD

The ‘‘delta method’’ (Seber 1982) approximates the
variance of any parameter (e.g., G) that is a function
of one or more random variables (X1, X2, …, Xn),
each with its own estimate of variance. The delta
method is based on a first-order Taylor series
transformation (Snedecor and Cochran 1989:286–
287). When random variables are independent, the
following generalized formula can be used (Seber
1982:7–9):

var Gð Þ~ var f X1, X2, :::, Xnð Þ½ �

~
Xn

i ~ 1

var Xið Þ
Lf

LXi

� �2

,
ð1Þ

where
Lf

LXi

is the partial derivative of G, with respect

to Xi. When random variables are not independent,

covariance of the random variables must be in-
corporated into the variance approximation:

var Gð Þ~ var f X1, X2, :::, Xnð Þ½ �

~
Xn

i ~ 1

var Xið Þ
Lf

LXi

� �2

z 2
Xn

i ~ 1

Xn

j ~ 1

cov Xi, Xj

	 
 Lf

LXi

� �
Lf

LXj

� �
:

ð2Þ

CASE EXAMPLES

SINGLE VARIABLE TRANSFORMATIONS

Simple transformation. The simplest application of
the delta method is when we manipulate a single
variable (Table 1). For example, we might have
a known number of nesting female birds (N), with
a subsample of nests from which we obtain an
average clutch size (m̂c) and its sampling variance,
vâr(m̂c). From this sample of nests, a biologist might
need to predict the number of eggs produced by the
population, as well as the sampling variance for this
prediction. To apply the delta method, we must start
by describing the relationship between the demo-
graphic rates in question. The estimate of total egg
production (p̂) by the nesting population would be: p̂
5 N ? m̂c. But, we also need to derive the variance for
p̂.

To use the delta method to arrive at this
approximation, using equation 1 with a single vari-
able transformation, we simply have:

vâr p̂pð Þ~ vârar m̂mcð Þ
Lp̂p

Lm̂mc

� �2

: ð3Þ

Next, we take the derivative of the function, p, which
we can express as (N ? m̂c)9. Because m̂c is our
parameter of interest (generically, x) for the partial
derivative, N becomes a constant (generically, c). So
we use the cx rule in Table 2 to find that our
derivative equals N. By substituting N for the

TABLE 1. General rules for calculating sampling variances using the delta method. Examples are provided
for each set of simple relationships. In the functions provided, c is a constant, and h is a parameter (e.g.,
survival rate or density estimate).

Rule Example

Function Variance approximation Function Variance approximation

ch c2var(h) Nh N2var(h)
h

c
1

c

� �2

var hð Þ
1

5
h

1

25
var hð Þ

c + h var(h) h + 0.10 var(h)

hc c2h(c-1)2var(h) h7 49h12var(h)

h
1
c 1

c2
h

2 1{cð Þ
c½ � var hð Þ h

1
7 1

49

ffiffiffiffiffiffiffi
h127

p
: var hð Þ
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derivative in equation 3 and squaring, we arrive at
our variance approximation (Table 1):

vâr p̂pð Þ~ N2 : vâr m̂mcð Þ: ð4Þ

Changing temporal scale. Let’s evaluate a second
example with a single variable. Consider that we want
to take a daily nest survival rate estimate (Ŝd), and
extrapolate it to a weekly nest survival estimate (Ŝw).
Following the process outlined in our first example,
above, we first need to establish the relationship as:
Ŝw 5 (Ŝd)7.

Next, substitute values in equation 1:

vâr ŜSw

� �
~ vâr ŜSd

� � LŜSw

LŜSd

" #2

: ð5Þ

We have an estimate of var(Ŝd) from our daily nest
survival analysis, so we only need the derivative of
Ŝd

7. In this case, our parameter of interest (x) for the
derivative is Ŝd, and it is raised to the power of 7. We
use the xc rule in Table 2, to find:

LŜSw

LŜSd

" #
~ ŜS7

d

� �0
~ 7ŜS6

d :

After substituting for the derivative in equation 5, the
resulting approximation of var(Ŝw) is (Table 1):

vâr ŜSw

� �
~ 49 : vâr ŜSd

� �
: ŜS12

d : ð6Þ

More examples of changes in temporal scale for
survival rate estimates of interest to avian ecologists
are provided in Table 3 (an on-line variance calcu-
lator for these examples can be found at ,http://
snr.unl.edu/powell/research/research.htm.).

TABLE 2. Simple rules for calculating derivatives
for use in the approximation of variance using the
delta method. In the functions provided, c is
a constant, and x is a parameter (e.g., survival rate
or density estimate). Derivative rules after Larson
and Hostetler (1982).

Function Derivative

c 0
x 1
cx c
x + c x
xc cx(c-1)

x

c
1

c
c

x
{

c

x2

TABLE 3. Approximations for sampling variance of survival estimates, by the delta method, when changing
the scale of temporal units.

Survival temporal rescaling

Relationship Variance approximationFrom To

Daily Weekly Ŝw 5 (ŜD)7 vâr(Ŝw) 5 49 ? vâr(ŜD ) ? ŜD
12

Daily Monthly (30 days) ŜM 5 (ŜD)30 vâr(ŜM) 5 900 ? vâr(ŜD) ? ŜD
58

Daily Annual ŜA 5 (ŜD)365 vâr(ŜA) 5 133225 ? vâr(ŜD) ? ŜD
728

Weekly Daily ŜD ~

ffiffiffiffiffiffiffi
ŜW

7

q
vâr ŜD

	 

~

1

49
: vâr ŜW

	 

:
ffiffiffiffiffiffiffi
Ŝ12

W

7

q
Weekly Monthly (4 weeks) ŜM 5 (ŜW )4 vâr(ŜM) 5 16 ? vâr(ŜW) ? ŜW

6

Weekly Annual (52 weeks) ŜA 5 (ŜW )52 vâr(ŜA) 5 2704 ? vâr(ŜW) ? ŜW
102

Monthly (30 days) Daily ŜD ~

ffiffiffiffiffiffiffi
ŜM

30

q
vâr ŜD

	 

~

1

900
: vâr ŜM

	 

:

ffiffiffiffiffiffiffi
Ŝ58

M

30

q

Monthly (4 weeks) Weekly ŜW ~

ffiffiffiffiffiffiffi
ŜM

4

q
vâr ŜW

	 

~

1

16
: vâr ŜM

	 

:
ffiffiffiffiffiffiffi
Ŝ6

M

4

q
Monthly Annual ŜA 5 (ŜM )12 vâr(ŜA) 5 144 ? vâr(ŜM) ? ŜM

132

Annual Daily ŜD ~

ffiffiffiffiffiffi
ŜA

365

q
vâr ŜD

	 

~

1

133225
: vâr ŜA

	 

:

ffiffiffiffiffiffiffiffiffi
Ŝ728

A

365

q

Annual (52 weeks) Weekly ŜW ~

ffiffiffiffiffiffi
ŜA

52

q
vâr ŜW

	 

~

1

2704
: vâr ŜA

	 

:

ffiffiffiffiffiffiffiffiffi
Ŝ102

A

52

q

Annual Monthly ŜM ~

ffiffiffiffiffiffi
ŜA

12

q
vâr ŜM

	 

~

1

144
: vâr ŜA

	 

:

ffiffiffiffiffiffiffi
Ŝ22

A

12

q
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MORE THAN ONE VARIABLE

Annual population growth. Annual, discrete popula-
tion growth (l) can be defined for avian populations as:l
5 SA + B?SJ (Pulliam 1988). Avian biologists commonly
usethisrelationshiptoanalyzesource-sinkdynamics. Ifli

, 1 then populations are classified as sinks during year i
(mortality exceeds reproduction); similarly, if li . 1 then
populations are classified as sources (reproduction
exceeds mortality). Thus, it becomes necessary to derive
vâr(l̂) to rigorously determine if the population is
increasing or decreasing; indeed, confidence intervals
for each quantity could be used to reject Ho: l 5 1.
However, I am not aware of a published method for
deriving var(l) when l 5 SA + B?SJ.

Because l is a function of more than one random
variable, each of which has an associated sampling
variance estimate, it follows that l will have a variance
that is a function of the sampling variance of the
individual parameters. Further complicating matters,
fecundity (B) is defined as the number of female
fledglings per year, and B is a function of three random
variables, B 5 p N w N y, where p equals mean number of
female fledglings per successful nest, w equals nest
survival probability, and y equals the average number
of nests built per female per year. Thus, var(B) is
a function of the variances of p, w, and y.

To derive vâr(B̂), where B̂ 5 p̂ ? ŵ ? ŷ (assuming
independence of p, w, and y), we use equation 1:

vâr B̂B
	 


~ vâr p̂pð Þ LB̂B

Lp̂p

" #2

z vâr ŵw
� � LB̂B

Lŵw

" #2

z vâr ŷy
� � LB̂B

Lŷy

" #2

:

After finding the three partial derivatives (use the
cx rule in Table 2) in equation 7, we arrive at:

vâr B̂B
	 


~ vâr p̂pð Þ : ŵwŷy
� �2

� �

z vâr ŵw
� �

: p̂pŷy
� �2

� �

z vâr ŷy
� �

: p̂pŵw
� �2

� �
:

We now have a derived variance for B̂, which could
be useful on its own merits. But, to obtain vâr(l̂), the
next step is to use vâr(B̂) with direct estimates
(potentially from mark-recapture survival analyses) of
vâr(ŜA) and vâr(ŜJ) to approximate the variance of l.

To derive vâr(l̂), where l̂ 5 ŜA + ŜJ ? B̂,

vâr l̂l
� �

~ vâr ŜSA

� � Ll̂l
LŜSA

" #2

z vâr B̂B
	 
 Ll̂l

LB̂B

" #2

z vâr ŜSJ

� � Ll̂l
LŜSJ

" #2

:

After taking the three partial derivatives (use rules
in Table 2) in equation 9, we arrive at:

vâr l̂l
� �

~ vâr ŜSA

� �
z vâr B̂B

	 

: ŜS2

J

� �
z vâr ŜJ

� �
: B̂2

� �
:

Mean annual density. Let’s consider a second
example of the transformation of multiple variables.
Biologists often obtain annual estimates of density
for a bird species over multiple years. Consider
a situation in which a biologist is interested in the
effects of prescribed burning on grassland bird
densities. To compare densities in different treatment
types (burned, b, and control, c) across years (i), it is
necessary to calculate the mean density (D̄b

i, D̄c
i) in

each treatment. The sampling variance of the mean
density for the burned treatment, v̂r(D̄b), is not simply
the average sampling variance of the annual estimates
of D̂b

i used to calculate D̄b. But, as expected, vâr D̄b is
certainly a function of the annual sampling variances
of D̂b

i.
For our example, let’s consider the data from only

the burned portion of the above experiment and
assume we have five years of density estimates, D̄b

1,
D̄b

2, D̄b
3, D̄b

4, and D̄b
5. Again, our goal is to obtain D̄b

and vâr(D̄b). For simplicity, we’ll assume that the
densities are estimated from separate datasets, and
the annual estimates are independent. The relation-
ship of the parameters is:

�DDb ~
D̂Db

1 z D̂Db
2 z D̂Db

3 z D̂Db
4 z D̂Db

5

5

~
1

5
D̂Db

1 z
1

5
D̂Db

2 z
1

5
D̂Db

3 z
1

5
D̂Db

4 z
1

5
D̂Db

5:

ð11Þ

To apply equation 1 (assuming independence), we
have:

vâr �DDb
	 


~ vâr D̂Db
1

	 
 L�DDb

LD̂Db
1

" #2

z vâr D̂Db
2

	 
 L�DDb

LD̂Db
2

" #2

z vâr D̂Db
3

	 
 L�DDb

LD̂Db
3

" #2

z vâr D̂Db
4

	 
 L�DDb

LD̂Db
4

" #2

z vâr D̂Db
5

	 
 L�DDb

LD̂Db
5

" #2

:

To calculate the partial derivatives, each D̂b
i

becomes the parameter of interest (x) and all other
terms in equation 11 are constants (c). We use the cx
and c rules in Table 2. By the c rule, the derivative of
the string of constants is 0 (Table 2). Thus, with
respect to each D̂b

i
in equation 12, the partial

derivative is:

L�DDb

LD̂Db
i

~ leftð1
5

D̂Db
1 z

1

5
D̂Db

2 z
1

5
D̂Db

3 z
1

5
D̂Db

4 z
1

5
D̂Db

5Þ
0

~
1

5
:

ð13Þ

After substituting for the partial derivatives in
equation 12, we arrive at our solution:

(7)

(8)

(9)

(12)

(10)
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vâr �DDb
	 


~
1

25
vâr D̂Db

1

	 

z

1

25
vâr D̂Db

2

	 

z

1

25
vâr D̂Db

3

	 

z

1

25
vâr D̂Db

4

	 

z

1

25
vârj D̂Db

5

	 

:

Effect size (correlated variables). The use of the
delta method is most straightforward when dealing
with single variable transformations. When working
with multiple variables, it is possible (probable in
many cases) that variables X1, X2, …, Xn (equation 1)
will not be independent. In this case, the covariance
between variables must be considered when approx-
imating the sampling variance (equation 2).

Doherty et al. (2002) incorporated covariance into
an approximation of the sampling variance of effect
size. Although a useful example of the use of the delta
method for multiple variables that are not indepen-
dent, Doherty et al. (2002) do not provide instruc-
tions to guide similar applications. To understand
how Doherty et al. (2002) used the delta method to
arrive at the formula in their manuscript, we begin
with the function in question. Doherty et al. (2002)
estimated effect size (ĥ) as the ratio of male and
female fidelity rates (F m and F f, respectively), where

ĥh ~
F̂Fm

F̂Ff
. Sampling variance for the individual fidelity

rates is available, but we now need vâr(ĥ).
To use the delta method (equation 2) to approx-

imate vâr(ĥ), incorporating covariance between F m

and F f, we have:

vâr ĥh
� �

~ vâr F̂Fm
	 
 Lĥh

LF̂Fm

" #2

z vâr F̂Ff
	 
 Lĥh

LF̂Ff

" #2

z 2 : côv F̂Fm, F̂F f
	 
 Lĥh

LF̂Fm

" #
Lĥh
LF̂F f

" #
:

ð15Þ

We use two rules to find the partial derivatives in
equation 15. For the partial derivative when F m is
our parameter of interest (x), our constant (c) is 1/F f,
and we use the x/c rule (Table 2). When, F f is our
parameter of interest (x), our constant (c) is F m, and
we use the c/x rule (Table 2). Thus, the partial

derivatives are:
Lĥ

LF̂m
~

1

F̂ f
and

Lĥ
LF̂ f

~ {
F̂m

F̂ f
	 
2

.

Substituting the partial derivatives into equation 15
and simplifying, we have:

vâr ĥ
	 


~
1

Ffð Þ2

" #
: vâr F̂m

	 

z

vâr F̂ f
	 


F̂m
	 
2

F̂ f
	 
2

"

{
2 : côv F̂m, F̂ f

	 

: F̂m

F̂ f

#
:

ð16Þ

By further simplifying, we arrive at the formula

provided by Doherty et al. (2002):

vâr ĥ
� �

~ ĥ2 :

vâr F̂m
� �

F̂m
� �2

z
vâr F̂ f
� �

F̂ f
� �2

{
2 : côv F̂m, F̂ f

� �
F̂mF̂ f

2
64

3
75:ð17Þ

The estimate for covariance can be obtained from
software packages that provide variance-covariance
matrices. But, in other cases, covariance matrices
must be derived. MacKenzie et al. (2006) and Cooch
and White (2006) provide additional examples of
how to incorporate covariance matrices into the delta
method.

DISCUSSION

Some reflection on the appropriateness of the delta
method may be useful for avian biologists consider-
ing the application of the delta method to data.
Cooch and White (2006) note that when trans-
formation of variables is highly nonlinear over the
range of values being examined, the delta method
may not approximate variance well. Of the case
examples provided, the approximation of vâr(l̂) has
the most potential to be problematic. Powell et al.
(2000) used simulation modeling as an alternative to
the delta method for estimating the uncertainty
surrounding estimates of population growth rates.

The delta method is not the only method that is
useful for deriving variance approximations and
confidence intervals for transformed variables. Wil-
liams et al. (2002) provide additional methods,
including the use of bootstrapping methods. Indeed,
when relationships are complex (nonlinear) or when
estimates of covariance are not available to judge the
independence of variables, the delta method should
not be used. However, the examples presented here
suggest that there are many circumstances in which
the delta method can be applied in a straightforward
and rigorous fashion. I encourage avian biologists to
explore the delta method as a tool for providing
useful approximations of sampling variance.

Thanks to M. Conroy for extolling the merits of the
delta method during my graduate research. This
manuscript was improved by comments from D.
Diefenbach and an anonymous reviewer. An online
variance calculator, with examples found in Table 3,
is available at ,http://snr.unl.edu/powell/research/
research.htm.. This research was supported by
Hatch Act funds through the University of Nebraska
Agricultural Research Division, Lincoln, Nebraska.
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