

The Basic Helix-Loop-Helix Transcription Factor Family in the Pea Aphid, Acyrthosiphon pisum

Authors: Dang, Chun-Wang, Wang, Yong, Chen, Ke-Ping, Yao, Qing, Zhang, De-Bao, et al.

Source: Journal of Insect Science, 11(84): 1-11

Published By: Entomological Society of America

URL: https://doi.org/10.1673/031.011.8401

The BioOne Digital Library (<u>https://bioone.org/</u>) provides worldwide distribution for more than 580 journals and eBooks from BioOne's community of over 150 nonprofit societies, research institutions, and university presses in the biological, ecological, and environmental sciences. The BioOne Digital Library encompasses the flagship aggregation BioOne Complete (<u>https://bioone.org/subscribe</u>), the BioOne Complete Archive (<u>https://bioone.org/archive</u>), and the BioOne eBooks program offerings ESA eBook Collection (<u>https://bioone.org/esa-ebooks</u>) and CSIRO Publishing BioSelect Collection (<u>https://bioone.org/csiro-ebooks</u>).

Your use of this PDF, the BioOne Digital Library, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Digital Library content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne is an innovative nonprofit that sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

The basic helix-loop-helix transcription factor family in the pea aphid, Acyrthosiphon pisum

Chun-Wang Dang^{1a}, Yong Wang^{2b*}, Ke-Ping Chen^{1c}, Qing Yao^{1d}, De-Bao Zhang^{1e}, Min Guo^{1f}

¹Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China ²School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China

Abstract

The basic helix-loop-helix (bHLH) proteins play essential roles in a wide range of developmental processes in higher organisms. bHLH family members have been identified in over 20 organisms, including fruit fly, zebrafish, and human. This study identified 54 bHLH family members in the pea aphid, *Acyrthosiphon pisum* (Harris) (Hemiptera: Aphididae), genome. Phylogenetic analyses revealed that they belong to 37 bHLH families with 21, 13, 9, 1, 9, and 1 members in group A, B, C, D, E, and F, respectively. Through in-group phylogenetic analyses, all of the identified *A. pisum* bHLH members were assigned into their correspondent bHLH families with confidence, among which 51 were defined according to phylogenetic analyses with orthologs from *Drosophila melanogaster* Meigen (Diptera: Drosophildae), and 3 of them were defined according to phylogenetic analyses on genomic coding regions revealed that the number and average length of introns in *A. pisum* bHLH motifs are higher than those in other insects. The present study provides useful background information for future studies on structure and function of bHLH proteins in the regulation of *A. pisum* development.

Keywords: blast search, orthologous family, phylogenetic analysis Abbreviations: Ap, Acyrthosiphon pisum; Am, Apis mellifera; Bm, Bombyx mori ; Tc, Tribolium castaneum Correspondence: a chunwang521123@163.com, ^{b*} ywang@uis.edu.cn, ^c kpchen@uis.edu.cn, ^d yaoqin@uis.edu.cn, ^e ff 1113a@126.com, ^f guomin20042008@126.com, *Corresponding author Editor: lgor Sharakhov was Editor of this paper Received: 25 November 2010, Accepted: 20 December 2010 Copyright : This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed. ISSN: 1536-2442 | Vol. 11, Number 84

Cite this paper as:

Dang C-W, Wang Y, Chen K-P, Zhang D-B, Guo M. 2011. The basic helix-loop-helix transcription factor family in the pea aphid, Acyrthosiphon pisum. Journal of Insect Science 11:84 available online: insectscience.org/11.84

Introduction

The basic helix-loop-helix (bHLH) proteins form a large superfamily of transcription factors that play important roles in a wide range of developmental processes including neurogenesis, myogenesis, hematopoiesis, sex determination, and gut development. The bHLH domain is approximately 60 amino acids long and comprises a DNA-binding basic region (b) and two helices separated by a variable loop region (HLH) (Massari and Murre 2000). The HLH domain promotes dimerization, allowing the formation of homodimeric or heterodimeric complexes between different family members. The two basic domains which are brought together dimerization specific through bind hexanucleotide sequences.

Since the first characterization of the murine bHLH transcription factors E12 and E47 (Murre et al. 1989), Atchley et al. (1999) developed a predictive motif for the bHLH domains based on amino acid frequencies at all positions of 242 bHLH proteins, among which 19 sites were highly conserved in all the organisms. With the completion of genome sequencing projects for an increased number of organisms, over one thousand bHLH family members have been identified in organisms whose genome sequences were available. These include 8 bHLH genes in Saccharomyces cerevisiae, 16 in Amphimedon queenslandica, 33 in Hydra magnipapillata, 33 in Caenorhabditis elegans, 104 in Gallus gallus, 46 in Ciona intestinalis, 50 in Strongylocentrotus purpuratus, 51 in Apis mellifera, 52 in Bombyx mori, 57 in Daphia pulex, 59 in Drosophila melanogaster, 63 in Lottia gigantea, 64 in Capitella sp 1, 68 in Nematodtella vectensis, 78 in Branchiostoma floridae, 87 in Tetraodon nigroviridis, 114 in

Mus musculus, 118 in *Homo sapiens*, 139 in *Brachydanio rerio*, 147 in *Arabidopsis*, and 167 in *Oryza sativa* (Zheng et al. 2009; Li et al. 2006; Satou et al. 2003; Simionato et al. 2007; Toledo-Ortiz et al. 2003; Wang et al. 2007, 2008, 2009).

Based on phylogenetic analyses to the available bHLH proteins, Ledent and Vervoort (2001) defined 44 orthologous families and 6 higher-order groups for bHLH proteins, among which 36 include bHLH from animals only, two have representatives in both yeasts and animals, two are present only in yeast, and four are present only in plants. They named the 44 families according to their first reported names, common abbreviations, or their best-known members of the family. And the higher-order groups were named A, B, C, D, E, and F based on their different DNA-binding properties of these groups. Group A and B include bHLH proteins that bind hexameric DNA sequences referred to as "E boxes" (CANNTG), in which group A binds to CACCTG or CAGCTG and group B binds to CACGTG or CATGTTG (Murre et al. 1989; Van Doren et al. 1991; Dang et al. 1992). Group C corresponds to the family of bHLH proteins known as bHLH-PAS which is about 260-310 amino acids long (Crews 1998). bHLH-PAS proteins bind the core sequence of ACGTG or GCGTG. Group D corresponds to HLH proteins that lack a basic domain. They form inactive heterodimers with group A proteins. Group E corresponds to the family of bHLH proteins which bind preferentially to sequences typical of N boxes (CACGCG or CACGAG). They also contain one additional Orange domain and one WRPW peptide in their carboxyl terminus. Group F corresponds to the family of bHLH proteins that have the COE domain which has an additional domain involved in both dimerization and DNA binding (Ledent and Vervoort 2001).

Ledent et al. (2002) defined 44 families for bHLH proteins from animals only, among which 20, 12, 7, 1, 3, and 1 families are included in groups A, B, C, D, E, and F, respectively. In 2007, it was found that the MyoR family could be expanded into three families, i.e. MyoRa , MyoRb, and Delilah, and the originally separated families, Hairy and E(spl), needed to be combined into one family, H/E(spl), due to insufficient evidence from the phylogenetic analyses (Simionato et al. 2007). Therefore, at present, animal bHLH proteins are classified into 45 families.

The pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), is the primary aphid species used in laboratory and genetic studies. A. pisum has been intensively studied as a model for understanding bacterial endosymbiosis, phenotypic plasticity, clonal vs. sexual reproduction, and the development of resistance to pesticides (Wilson et al. 2010; Srinivasan et al. 2010). bHLH proteins are important transcription factors with regulatory functions in various developmental processes in eukaryotes. Identification of bHLH protein members encoded in the A. pisum genome will facilitate studies on gene structure and function involved in regulation of A. pisum development. However, there have been no reports on identification and characterization of bHLH genes in A. pisum. In this study, amino acid sequences of 59 D. melanogaster Meigen (Diptera: Drosophilidae) bHLH motifs were used to conduct tblastn searches against Α. pisum genome sequences (http://www.ncbi.nlm.nih.gov/genomeprj/136 46) to obtain candidate bHLH members in A. pisum. Subsequent examination and analyses led to successful identification of 54 bHLH members in *A. pisum* and definition of orthologous families for them with sufficient confidence. Moreover, it was found that the number and average length of introns in *A. pisum* bHLH motifs are higher than those in other insects. These results provide useful background information for future studies on structure and function of bHLH proteins in the regulation of *A. pisum* development.

Materials and Methods

Tblastn searches

Amino acid sequences of 59 D. melanogaster bHLH motifs were obtained from the additional files of previous reports (Ledent and Vervoort 2001; Simionato et al. 2007). Each sequence was used as guery sequence to perform tblastn searches against the A. pisum genome sequences. The expected value (E)was set at 10 in order to obtain all bHLH related sequences. The obtained subject sequences were manually examined to keep only one sequence for those that have the same contig number, reading frame, and coding regions; to add the missing amino acids to corresponding sites by EditSeq program (version 5.01) of the DNAStar package; and to find introns within the bHLH motifs. Intron analysis was done using NetGene2 application online (http://www.cbs.dtu.dk/services/NetGene2/).

Sequence alignment

All sequences that had been improved by the above methods were aligned using MEGA4 (Tamura et al. 2007) built-in ClustalW program (version 4.0) with default settings. Each sequence was examined for their amino acid residues at the 19 conserved sites by manual checking. Sequences with less than nine variations were regarded as potential ApbHLH (*A. pisum* bHLH) members. The sequences which have less than ten conservations were discarded and the rest sequences were aligned again using ClustalW. The aligned ApbHLH motifs were shaded in GeneDoc Multiple Sequence Alignment Editor and Shading Utility (Version 2.6.02) (Nicholas et al.1997) and copied to rich text file for further annotation.

Phylogenetic analyses

Phylogenetic analyses to all the identified ApbHLH members were carried out in two steps. First, all obtained ApbHLH motif sequences were used to build neighbor-joining (NJ) distance tree with the 59 D. melanogaster bHLH motif sequences using PAUP 4.0 Beta 10 (Swofford 1998) based on a step matrix constructed from Dayhoff PAM 250 distance matrix by R. K. Kuzoff (http://paup.csit.fsu.edu/). Then. each ApbHLH motif sequence was used to conduct in-group phylogenetic analyses (Wang et al. 2007) with D. melanogaster bHLH motif sequences. That is, each amino acid sequence of A. pisum bHLH motifs was used to construct NJ, maximum parsimony (MP), and maximum likelihood (ML) phylogenetic trees with *D. melanogaster* bHLH family members of the corresponding group, respectively. The NJ trees were bootstrapped with 1000 replicates to provide information about their reliability. MP statistical analysis was performed using heuristic searches and bootstrapped with 100 replicates. ML trees were constructed using TreePuzzle 5.2 (Schmidt et al. 2002) with quartet-puzzling tree-search procedure and 25,000 puzzling steps. Model of substitution was set to the Jones-Taylor-Thornton (Jones et al. 1992). Other parameters were set to default values.

Results and Discussion

Identification of ApbHLH members

The tblastn searches, sequence alignment, and examination of the 19 conserved amino acid sites revealed that there were 54 bHLH genes in A. pisum genome. The alignment of all 54 ApbHLH members is shown in Figure 1 and the phylogenetic tree constructed using amino acids from 54 ApbHLH motifs and 59 D. melanogaster bHLH motifs is shown in Figure 2. Figure 1 and 2 show that there were 21, 13, 9, 1, 9, and 1 ApbHLH members in group A, B, C, D, E, and F, respectively. In Figure 1, there are two most conserved sites located at sites 24 and 51 of the bHLH motif, respectively. Besides these, there are seven other sites that are also conserved (indicated with asterisks on top of Figure 1). Because the phylogenetic analyses have provided sufficient bootstrap support, the identified ApbHLH motifs were named according to nomenclature used by *D. melanogaster* bHLH sequences. In the case where one D. melanogaster bHLH sequence has two or more A. pisum homologues, the researchers used 'a', 'b', and 'c' or '1', '2', and '3' etc to number them. For instance, two homologues of the D. melanogaster Mist, Bmx and Stich1, genes were found in A. pisum. Therefore, these ApbHLH genes were named ApMist1 and ApMist2, ApBmx1 and ApBmx2, and ApStichla and ApStichlb, respectively. Fiftyfour ApbHLHs were named in accordance with the corresponding *D. melanogaster* and other insect homologues as listed in Table 1.

Identification of orthologous families

Ortholog identification has been very uncertain since there is no absolute criterion that can be used to decide whether two genes are orthologous (Ledent and Vervoort 2001). However, in previous studies (Wang et al. 2007, 2008) in-group phylogenetic analysis was adopted to identify homologues for the unknown sequences that would form a monophyletic clade among themselves. So a

Journal of Insect Science:Vol. 11 | Article 84

more certain criterion was used based on the criterion used by Ledent et al. (Ledent and Vervoort 2001; Ledent et al. 2002): If an unknown single A. pisum bHLH forms a monophyletic clade with another bHLH of family in phylogenetic known trees constructed with different methods, and all the bootstrap values exceed 50 then the known member will be regarded as a homologue of the unknown sequence. Figure 3, as an example here, shows NJ, MP, and ML phylogenetic trees constructed with one A. pisum bHLH member (ApDa) and seven group А bHLH members from D. *melanogaster*. In all three trees, ApDa formed monophyletic clade with Da (daughterless) specimens of D. melanogaster with all bootstrap values as 100. Therefore, ApDa was ortholog considered an of Da D. melanogaster. Similar in-group phylogenetic analyses were conducted for each of the identified A. pisum bHLH members. All the bootstrap values of constructed NJ, MP, and ML trees for each of the identified A. pisum bHLH members were listed in Table 1 without showing the correspondent constructed trees. Table 1 showed that the orthology of A. pisum bHLH members with D. melanogaster and other insect species can be divided into the following categories:

First, among all the 54 *A. pisum* bHLH members: 32 ApbHLH members have all the bootstrap values over 50 (54 \leq ! bootstrap values \leq !100) in constructed NJ, MP, and ML trees except *ApMax3* of which the bootstrap value of the MP tree is 42. These 32 ApbHLHs are *ApDa*, *ApMistr1*, *ApMistr2*, *ApOli*, *ApNet*, *ApMyoR*, *ApDel*, *ApTwi*, *ApFer1*, *ApFer3*, *ApHand*, *ApSCL*, *ApNSCL*, *ApMnt*, *ApMax1*, *ApMax2*, *ApMax3*, *ApCrp*, *ApMLX*, *ApSREBP*, *ApTai*, *ApClk*, *ApDys*, *ApSs*, *ApSim*, *ApTrh*, *ApSima*, *ApTgo*, *ApEmc*, *ApStich1a*, *ApSide*, and *ApKn(col)*. The researchers have sufficient confidence to define the orthology of these ApbHLH motifs as corresponding to *D. melanogaster* bHLH orthologs.

Second, 5 ApbHLH members (namely *ApTap*, ApFer2, ApDm, ApUSF, and ApBmx2) have bootstrap values ranging from 77 to 99 in NJ and MP trees, except ApDm of which the bootstrap value of the MP tree is 45. In NJ and MP trees, each of them formed a monophyletic clade with the same D. *melanogaster* bHLH orthologue. However, they formed monophyletic clades (bootstrap value:58 \leq bootstrap values \leq 89) with other *D*. melanogaster bHLH members in ML trees. Specifically, the orthologue of *ApTap* was *tap* of D. melanogaster in NJ and MP trees, but was cato in ML trees. The orthologue of ApFer2 was Fer2 of D. melanogaster in NJ and MP trees, but was Pxs in ML trees. The orthologues of ApDm, ApUSF, and ApBmx2 were dm, USF, and bmx of D. melanogaster, respectively, in NJ and MP trees, but all were SREBP in ML trees. The orthology for these 5 ApbHLH members has been defined according to the statistical support from NJ and MP trees.

Third, 7 ApbHLH members (namely ApAto, ApSage, ApPxs, ApBmx1, ApHev, ApStich1b, and ApH) formed monophyletic clades with bootstrap values ranging from 52 to 100 in NJ and MP trees, but did not form any monophyletic groups with any single bHLH sequence in ML trees (marked with n/m* or n/m in Table 1). Four other ApbHLH (namely ApCato. ApRst(1)JH. members ApCvc, and ApDpn) formed monophyletic clades with bootstrap values ranging from 45 to 96 in one of the NJ, MP, and ML trees, but did not form any monophyletic clades in the other two trees. Although these 11 ApbHLH members did not have sufficient bootstrap support, the orthologs were defined because they each have one or two bootstrap supports to testify to their orthology to the correspondent *D. melanogaster* ortholog. This phylogenetic divergence of bHLH motif sequences between *A. pisum* and *D. melanogaster* probably means that these two insect species have evolved in quite different circumstances.

Finally, there are 6 ApbHLH sequences which did not form monophyletic clade with any D. melanogaster bHLH sequence in all constructed phylogenetic trees. They are ApASCb, ApAtonal1, ApMad, ApHES1, ApHES2, and ApHES3 (marked with ^a or ^b in Table 1 and Figure 2). Each of them was used to conduct in-group phylogenetic analyses with corresponding sequences from 3 other insect species, namely A. mellifera, B. mori, and Tribolium castaneum. For example, Figure 4 shows that ApASCb formed a monophyletic clade with TcASCb with bootstrap values ranging from 78 to 99. Therefore, it was considered an ortholog of TcASCb. Similarly, ApMad was found to be an ortholog of TcMad with all bootstrap values at 100 (Table 1). Orthology of *ApHES1* could also be defined, although the bootstrap values were not sufficiently high $(35 \leq !)$ bootstrap values $\leq !44$) and no monophyletic calde was formed in two phylogenetic trees constructed. Orthology of ApHES2, ApHES3, and ApAtonall were the least clear. It was evident that ApHES2 and ApHES3 belonged to the H/E(spl) family. *ApAtonal1* was clearly a member of the Atonal family. Therefore, they have been named numerically (Table 1).

Identification of protein sequences and genomic contigs

Protein sequence accession numbers for all the identified ApbHLH motifs are listed in Table 1. There are 3 ApbHLH motifs, of which, protein sequence accession numbers were not found in any protein databases. They ApSREBP, are ApDys, and ApFer2, respectively. Protein sequence accession numbers for 14 ApbHLH motifs were only found in the 'Ab initio protein' database in which all protein sequences were predicted from their corresponding genomic sequences. ApCyc protein sequence accession number was found in 'RefSeq protein' database. The rest of the ApbHLH protein sequences accession numbers were found in 'Non-RefSeq protein' database.

The coding regions and intron analysis for 54 A. pisum bHLH motifs are listed in Table 2. These data indicate that there are 26 ApbHLH members with introns in their bHLH motifs, and the total number of intron is 34. Eighteen ApbHLH members have one intron, among ApDa. which ApClk, ApTgo, ApCvc, ApStich2, and ApHES1 have introns in the basic region; ApMistr1, ApMistr2, and ApPxs have introns in helix 1 region; ApASCb, ApUSF, ApCrp, ApBmx1, and ApSREBP have introns in the loop region; and ApSage, ApSCL, ApMnt, and ApBmx2 have introns in helix 2 region. Eight ApbHLH members have two introns, among which ApH, ApDpn, ApSide1, ApSide2, ApHES3, and ApKn(col) have introns in the basic and loop regions, ApTai has introns in the basic and helix 2 regions, and ApMad has introns in the loop and helix 2 regions. The longest intron in the A. pisum bHLH motif is 30,718 bp (base pairs), and the average length of intron is 4193 bp. Compared with other insect species, the number and length of introns are remarkably higher in A. pisum. For instance, in the B. mori and Apis mellifera bHLH motifs, there are only 12 and 9 introns with the longest introns being 7083 bp and 4460 bp, and the average length of introns being 1352 bp and 1326 bp, respectively. Also, 8 ApbHLH motifs have two introns, while no bHLH motif has been found to have two introns in *Bombyx mori* and *A. mellifera* (Wang et al. 2007, 2008).

Conclusion

Our study identified 54 bHLH members in the A. pisum genome. All ApbHLH members have been defined by their names and families according to various phylogenetic analyses with bHLH homologues of D. melanogaster, A. mellifera, B. mori, and T. castaneum. Among all ApbHLH members, 48 ApbHLH members have homologues in D. melanogaster, and 3 ApbHLH members have homologues in B. mori and T. castaneum. Three ApbHLH motifs' protein sequence accession numbers were not found in any protein database. The researchers also found that the number and average length of introns in ApbHLH motifs are higher than those in other insect species, which is quite possibly the consequence of the insertion of increased numbers of transposable elements in the coding regions of ApbHLH proteins as revealed by the International Aphid Genomics Consortium (2010). The above results would provide useful background information for future studies on functions of bHLH proteins in the regulation of A. pisum development.

Acknowledgements

The authors are thankful to professor Bin Chen of Jiangsu University and to two anonymous reviewers for their constructive suggestions and comments on the manuscript. This work was supported by Scientific Research Promotion Fund for the Talents of Jiangsu University (No. 09JDG029) and Jiangsu Sci-Tech Support Project -Agriculture (No. BE2008379).

References

Atchley WR, Terhalle W, Dress A. 1999. Positional dependence, cliques, and predictive motifs in the bHLH protein domain. *Journal of Molecular Evolution* 48: 501-516.

Crews ST. 1998. Control of cell lineagespecific development and transcription by bHLH-PAS proteins. *Genes & Development* 12: 607–620.

Dang CV, Dolde D, Gillison ML, Kato GJ. 1992. Discrimination between related DNA sites by a single amino acid residue of mycrelated basic-helix-loop-helix proteins. *Proceedings of the National Academy of Science USA* 89: 599–602.

Ferre-D'Amare AR, Prendergast GC, Ziff EB, Burley SK. 1993. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. *Nature* 363: 38–45.

International Aphid Genomics Consortium 2010 Genome Sequence of the Pea Aphid *Acyrthosiphon pisum. PLoS Biol* 8(2): e1000313. doi:10.1371/journal.pbio.1000313.

Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of mutation data matrices from protein sequences. *CABIOS* 8: 275-282.

Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D. 2006. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and *Arabidopsis*. *Plant Physiology* 141: 1167-1184.

Ledent V, Vervoort M. 2001. The basic helixloop-helix protein family: comparative genomics and phylogenetic analysis. *Genome Research* 11: 754-770.

Journal of Insect Science:Vol. 11 | Article 84

Ledent V, Paquet O, Vervoort M. 2002. Phylogenetic analysis of the human basic helix-loop-helix proteins. *Genome Biology* 3: R30.

Murre C, Mc Caw PS, Vaessin H, Caudy M, Jan LY, Cabrera CV, Buskin JN, Hauschka SD, Lassar AB, Weintraub H, et al. 1989. Interactions between heterologous helix-loophelix proteins generate complexes that bind specifically to a common DNA sequence. *Cell* 58: 537–544.

Massari ME, Murre C. 2000. Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms. *Molecular and Cellular Biology* 20: 429-440.

Nicholas KB, Nicholas-Jr HB, Deerfield-II DW. 1997. GeneDoc: Analysis and Visualization of Genetic Variation. *Embnet News* 4: 14.

Swofford DL. 1998. *PAUP**. *Phylogenetic Analysis Using Parsimony*, Version 4. Sinauer Associates.

Schmidt HA, Strimmer K, Vingron M, von Haeseler A. 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. *Bioinformatics* 18: 502-504.

Satou Y, Imai KS, Levine M, Kohara Y, Rokhsar D, Satoh N. 2003. Agenomewide survey of developmentally relevant genes in Ciona intestinalis. I. Genes for bHLH transcription factors. *Development Genes and Evolution* 213: 5–60213-221.

Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D, Degnan BM, Vervoort M. 2007. Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. *BMC Evolutionary Biology* 7: 33.

Srinivasan DG, Fenton B, Jaubert-Possamai S, Jaouannet M. 2010. Analysis of meiosis and cell cycle genes of the facultatively asexual pea aphid, *Acyrthosiphon pisum* (Hemiptera: Aphididae). *Insect Molecular Biology* 2: 229-239.

Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. *Plant Cell* 15: 1749-1770.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. *Molecolar Biology and Evolution* 24: 1596– 1599.

Van Doren M, Ellis HM, Posakony JW. 1991. The *Drosophila* Extramacrochaetae protein antagonizes sequence-specific DNA binding by Daughterless/Achaete-Scute protein complexes. *Development* 113: 245–255.

Wang Y, Chen KP, Yao Q, Wang W, Zhu Z. 2007. The basic helix-loop-helix transcription factor family in *Bombyx mori*. *Development Genes and Evolution* 217(10): 715–723.

Wang Y, Chen KP, Yao Q, Wang WB, Zhu Z. 2008. The basic helix-loop-helix transcription factor family in the honeybee, *Apis mellifera*. *Journal of Insect Science* 8: 40. Available online at http://www.insectscience.org/8.40/.

Wang Y, Chen KP, Yao Q, Zheng XD, Yang Zhe. 2009. Phylogenetic Analysis of Zebrafish Basic Helix-Loop-Helix Transcription Factors. *Journal of Molecular Evolution* 68(10): 629-640.

Wilson AC, Ashton PD, Calevro F, Charles H, Colella S, Febvay G, Jander G, Kushlan PF,

Journal of Insect Science: Vol. 11 | Article 84

Macdonald SJ, Schwartz JF, Thomas GH, Douglas AE. 2010. Genomic insight into the amino acid relations of the pea aphid, *Acyrthosiphon pisum*, with its symbiotic bacterium *Buchnera aphidicola*. *Insect Molecular Biology* 2: 249-258.

Zheng X, Wang Y, Yao Q, Yang Z, Chen K. 2009. A genome-wide survey on basic helixloop-helix transcription factors in rat and mouse. *Mammalian Genome* 20(10): 236-246.

		Basic Helix1 Loop Helix2 1111111112222222223333333334444444445555555555	
Name	Family	12345678901234567890123456789012345678901234567890123456789012	1
		* ** * *	
ApASCb	ASCb E12/E47	VVARRNAR TRT-VQA NWAFART-RKVVPLEENKSKRMS VKTTOMA I EY NOLO REGANNAR TRT-IRD NEALKELGRIGHTHLKTDKPOTKLGTUNMAVEV IMSLE	
ApDa ApTap	Ngn	REMANDREENE-MEN NEALDRE-REVI PTYPDDAKI TALET REALNY WALS	
ApMistr1	Mist	RELESNER ERLE-MHS INDAFOSE-REVIPHVKKDRRLSEIET TLAKNY I ALT	
ApMistr2	Mist	RELESNERER LE-MHS_NDAFEK REVVPHVKMGRKLSELET TLAKNY MALT	
ApOli	Beta3	VILNINAR TRI-MHD NDALDEL-RSVIPYAHSPSVRKLSVIAT LLAKNY LMQA	
ApCato ApAto	Atona I Atona I	KILAANAKETKI-MNG NEAFDKI-KEATPISTEDEHKLSTYETI QMAQSYISALG	
ApAtona 11	Atonal	RELANARES RE-MORENEAFOR - ROVP-AADDE	
ApNet	Net	RETEANARERSE-VHT SAAFDTE-RATIPSYSRNGKLS LSTERIASAY LTLS	
ApMyoR	MyoR	PRNAANARERAR-MRVLSKAFGRU-KTTLPWVPADTKLS%LDTURLATTYTAHLS	
ApDe I	Delilah	R: KTANAR SE-MREINEAFEAL-RRAVPHLAVDAHNEKLTEITTIRLAMKY ISALS	
ApSage ApPxs	Mesp Paraxis	LISGANAR TO TOS INSAFDU PRAMIPIOPPOR	
Aprxs ApTwi	Twist	VVARINARE R VOA NWAFAR - BXVVPLEENKS	
ApFer1	PTFa	QEQAANLR ERE-MOST NEAFEGE-RAHTPTLPYEKRLS_VDTLKLATGY_NFLS	
ApFer2	PTFb	PSQHIIIMNRLV-FSSINSAFDEL-RGHVPTFPYEKRLSKIDTLRLAIAYIALLR	
ApFer3 ApHand	PTFb Hand	QTRAAN IR TRE-MYN NEAFDKI-RRKVPTFAYEKRLST ET RLAITY GFMT	
ApSCL	SCL	PCTVTNSR = WR-OHN/TGAFAFT-RKI VP-THPHDKKI S/NFTL RMA I KY RI I S	
ApNSCL	NSCL	R NTANKK R - TOS NNAFSOL ROC PNVPSDT	
ApMnt	Mnt	TREVINKLENR-RAH KECFELI-KKOVPASODEKKTSNLST RSA I RY IOVLR	
ApMad ApMax1	Mad Max	KEAHHNALESKE-RDH, KOSETS -ROSVPSLOGEKVASEAOTIKKAADY OFMR	
ApMax2	Max	STEHHNISTRKT-RDO KONFEIT-KETIPVLRGDKPVSTAETTRKASEY EYMK	
ApMax3	Max	STERHNIL ERKE-RDQ_KDNIDIL-KDMIPVLRGDKPATRAEILKKASEY EYMK	
ApDm	Myc	T CEVINKLE, N RAHUKECFELI - KKOVPASODEKKT	
ApUSF	UŜF AF4	RELTHNEVERRE-RDKINGWIMY SKITPDCAEENKINYDNOS GGT AKACDY NELK	
ApCrp ApBmx1	TF4	REETANSNELKKEMUST NAGPUN - KILTPHHEG-EKES MATUGHTADT TULE REEAHTOA EOK E-RDALKKGYDCI-ODI VPTCOOTDSSGYKLS (ATV OKSTDY OYT	
ApBmx2	TF4	REEAHIQS OKE-REA KOGYNCL-YDLVSTY00TDISGYKLS ATVLOKSIDY OYSL	
ApAMLX	MLX	REVCHINAEQKE-RCN KNGFDML-NMLIPQINQNPNTKMSKAAMLQKGADY LQLR	
ApSREBP	SREDP		
ApTai	SRC	SQLNKCRNEKRE-REGENTYTEELAELISASFADMNSLSVKPD_CATLQETVNQ_RAGT	
ApCIk	Clock	KEKIRNASENE-ROOFNNLINEENRMLSTTNRKMDESTVEKTTINYENKOK	
ApRst(1)JH		STESRNLAEKNR-ROK_NKFITDUTELVPLIS-NSSKKVENTSVURLSAAF_RLKR	
ApDys	AHR	S ESINILA N T-ROK NIKE ITD TELVPLIS	
ApSs ApSim	AHR Sim	GGVGKSNPSTRH-RER_NAELDT ANLLPF — EHN IL SKLD SLS II RLSVSY RTKS MERSRNAATE-RENENAEFLELAKLLPLP AAITS OLD SASVIRLTTSY KMRH	
ApTrh	Trh	RERSKNAA UK KERENAEFLE AALLPLPAATTSOLD ASVIKLTTST KMKH REKSRDAA SE-RGKENYEFYELAKMLPLPAATTSOLD ASVIRLTTST KMKH	
ApSima	HIF	GOUDSN'S ATTERE ACCUDENCE FF EATER STUD STUD STUDYS ATTERNAL RERSRAAS TEREBEARE FEATURE FAIL FOR AATTE OLD AS TRAINING RERSRAAS STUDYS AND	
ApTgo	ARNT	STENHCE I TRE-RNK TAY I TELSDMVPACQSLARKPD LT IL RMAVNH KSLR	
ApCyc	BMAL	KKHNHSEI KRR-RDKMNSYI TELASMI PMCHTMPRKLDALSVIRMAVOH KTIR	
ApEmc	Emo	Sillevuhhvidyicdle	
ApHey	Hey	REKRRGIIERR-RDRINTSLSEERRLVPTAYEKQGSAKLEEAEIEQLTVDHIKMIH	
ApStich1a	Hey	DPMSHR I I = KR :- RDR / NNCLADI SRL I PAEYMKKGRGRVE KTE I I FMA I KH ' KYLO	
ApStich1b	Hey	DPMSHR I I EKRE-RDR. NNCLADUSRL I PAEYMKKGRGRVE KTE I DEMA I KHI KYLO APSKNRVY EKER-RDR_NVSFEED-RTVLPPSDSNASLG KAD I DNHA I DL RVLO	
ApH	HES	RESNKPIMEKE-RAR INCLNEIKTLILDATKKDPARHSKLE AD LENTVKH ESMO	
ApDpn ApSide	HES HES	K WINKP IME WE HAR NUCLNELK ILTEDALKKUPARHIKLE ADTEMIVRE QSLH	
ApSide ApHES1	HES	R WMKPML KE-RAR NRCLDE KELMVVALONEGENVSKLE AD I FLTVRH HKLR	
ApHES2	HES	RKITKPLLERKR-RAR INRCLDE KDLMFSALEAEGENVDKLEKADILEFTVKH QKIT	
ApHES3	HES	APSNARYU C ROKINUSFEERINU PYSUSAS TEACHUNANU DE INDU RISNRY III C RARINOCUEE KTU LUDALKOPAR - HIXE CAD EEITVRH ESIG RINNF III C RARINOCUEE KTU LUDALKOPAR - HIXE CAD EEITVRH OSIG KINNF III C RARINOCUEE KTU LUDALKOPAR - HIXE CAD EEITVRH OSIG RINNF III C RARINOCUEE KTU VALONEGON - VSKE CAD LE LIVRH I OKIK RINNFILI C RARINOCUEE KELIIVVALONEGON - VSKE CAD LE LIVRH I KKI RINNFILI C RARINOCUEE KELIIVVALONEGON - VSKE CAD LE LIVRH I KKI RINNFILI C RARINOCUEE KELIIVVALONEGON - VSKE CAD LE LIVRH I KKI RINNFILI C RARINOCUE KELIIVVALONEGON - VSKE CAD LE LIVRH I KKI RINNFILI C RARINOCUE KELIIVVALONEGON - VSKE CAD LE LIVRH I KKI RINNFILI C RARINOCUE KELIIVVALONEGON - VSKE CAD LE LIVRH I KKI RINNFILION K - RARINOCUE KELIIVVALONEGON - VSKE CAD LE LIVRH I KKI RINNFILION K - RARINOCUE KELIIVVALONEGON - VSKE CAD LE LIVRI KKI KKI RINNFILION K - RARINOCUE KELIIVVALONEGON - VSKE CAD LE LIVRI KKI KKI KKI KKI KKI KKI KKI KKI KKI K	
AnKn (as I)	COE	BLS-EPT DYGFOR -GKFVPRYPGDPEKLP EV I KRAADLAEALY	
ApKn (col)	UUE	UPAEV TURKAADLAEALT	

Figure 1. Alignment of 54 ApbHLH members. Designation of basic, helix 1, loop, and helix 2 follows Ferre-D'Amare et al. (1993). The family names and high-order groups have been organized according to Table I in Ledent et al. (2002). Highly conserved sites are indicated with asterisks on the top. High quality figures are available online.

Figure 2. Phylogenetic relationship of 54 ApbHLH members with 59 Drosophila melanogaster bHLH members. A neighbor-joining (NJ) tree is shown. Bootstrap values less than 50 are not shown. The higher-order group labels are in accordance with Ledent et al. (2002). ApbHLH member marked with ^a or ^b meant that it did not form a monophyletic clade with any single *D. melanogaster* bHLH member and was subject to separate phylogenteic analyses with bHLH members from *Apis mellifera*, *Bombyx mori*, and *Tribolium castaneum*. High quality figures are available online.

and (c) are NJ, MP, and ML trees, respectively, constructed with one Acyrthosiphon pisum bHLH member (ApDa) and seven group A bHLH members from Drosophila melanogaster. In all trees, OsRa (the rice bHLH motif sequence of R family) was used as the outgroup. High quality figures are available

			Fruit fly	B	ootstra	p values		
No.	Gene name	Family	homolog	NJ	MP	ML	Protein accession N	
1	ApASCb ^a	ASCb	TcASCb	99	95	78	XP 001949172.1	
2	ApDa	E12/E47	da	100	100	100	XP 001950085.1	
3	ApTap	Ngn	tap	99	93	58(cato)	hmm145914	
4	ApMistr1	Mist	Mistr	100	98	87	XP 001944687.1	
5	ApMistr2	Mist	Mistr	99	95	60	hmm401334	
6	ApOli	Beta3	Oli	100	100	98	XP 001950802.1	
7	ApCato	Atonal	cato	79	n/m*	n/m	hmm31924	
8	ApAto	Atonal	ato	99	88	n/m*	hmm125654	
9	ApAtonal1 ^b	Atonal	?	n/m*	n/m*	n/m*	hmm61024	
10	ApNet	Net	net	99	92	74	hmm79024	
11	ApMyoR	MyoR	MyoR	100	99	85	XP 001948616.1	
12	ApDel	Delilah	dle	99	92	78	XP 001945346.1	
13	ApSage	Mesp	sage	100	99	n/m	XP 001948879.1	
14	ApPxs	Paraxis	Pxs	61	52	n/m		
15	ApTwi	Twist	twi	100	100	93	XP 001946602.1	
16	ApFer1	PTFa	Fer1	100	94	89	hmm95774	
17	ApFer3	PTFb	Fer3	100	100	96(Pxs)	hmm242594	
18	ApFer2	PTFb	Fer2	94	77	72	Not available	
19	ApHand	Hand	Hand	99	96	66	XP 001945320.1	
20	ApSCL	SCL	SCL	100	99	75	NP 001156144.1	
21	ApNSCL	NSCL	NSCL	100	100	69	XP 001951616.1	
22	ApMnt	Mnt	Mnt	99	93	69	XP 001947496.1	
23	ApMad ^a	Mad	TcMad	100	100	100	XP 00194/490.1	
23	ApMaa1	Max	Max	100	96	92	XP_001944077.1 XP_001942656.1	
24 25		Max	Max	90	54	72	hmm160354	
25 26	ApMax2	Max	Max	82	42	55	hmm160334	
	ApMax3			82 79				
27	ApDm	Myc	dm		45	72(SREBP)	hmm384	
28	ApUSF	USF	USF	98	84	68(SREBP)	XP_001947444.1	
29	ApCrp	AP4	crp	100	97	97	XP_001945298.1	
30	ApBmx1	TF4	bmx	100	94	n/m	XP_001947371.1	
31	ApBmx2	TF4	bmx	98	87	89(SREBP)	XP_001951901.1	
32	ApMLX	MLX	MLX	100	100	63	XP_001950231.1	
33	ApSREBP	SREBP	SREBP	94	82	77	Not available	
34	ApTai	SRC	tai	100	100	63	XP_001944363.1	
35	ApClk	Clock	clk	100	93	74	XP_001944549.1	
36	ApRst(1)JH	Clock	Ret(1)JH	n/m*	n/m*	59	hmm126914	
37	ApDys	AHR	dys	100	100	93	Not available	
38	ApSs	AHR	<i>SS</i>	100	100	87	XP_001946523.1	
39	ApSim	Sim	sim	93	74	66	XP_001944204.1	
40	ApTrh	Trh	trh	100	94	90	XP_001949586.1	
41	ApSima	HIF	sima	96	94	56	XP_001951675.1	
42	ApTgo	ARNT	tgo	100	100	91	XP_001945040.1	
43	ApCyc	BMAL	сус	96	n/m	n/m	NP_001164574.1	
44	ApEmc	Emc	emc	99	98	95	XP_001947113.1	
45	ApHey	Hey	Hey	100	98	n/m*	XP_001944649.1	
46	ApStich1a	Hey	stich1	100	100	77	hmm38594	
47	ApStich1b	Hey	stich1	55	52	n/m*	XP_001945126.1	
48	ApH	H/E(spl)	h	96	95	n/m*	XP_001949685.1	
49	ApDpn	H/E(spl)	dpn	45	n/m*	n/m*	XP_001947900.1	
50	ApSide	H/E(spl)	side	99	97	95	XP_001945055.1	
51			BmHES1	n/m*	50	n/m*	-	
51	ApHES1 ^a	H/E(spl)	TcHES1	44	50	58	XP_001946911.1	
52	ApHES2 ^b	H/E(spl)	?	n/m*	n/m*	n/m*	XP 001949270.1	
53	ApHES3 ^b	H/E(spl)	?	n/m*	n/m*	n/m*	XP 001943580.1	
54	ApKn (col)	COE	Kn(col)	100	100	86	XP 001946640.1	

ApbHLH genes were named according to their D. melanogaster homologues. Bootstrap values were from in-group phylogenetic analyses with D. melanogaster bHLH motif sequences using NJ, MP, and ML algorithms, respectively. OsRa (the rice bHLH motif sequence of R family) was used as the outgroup in every constructed tree except those for ApASCb, ApCato2, ApMad and ApHESI which used separate outgroup sequence. n/m means that a ApbHLH does not form a monophyletic group with any other single bHLH motif sequence. n/m* means that a ApbHLH does not form a monophyletic clade with any specific bHLH motif sequence but forms a monophyletic clade with other bHLH proteins of the same family. a means that the gene's orthology was defined by ingroup phylogenetic analyses with bHLH orthologs from Bombyx mori, Tribolium castaneum and/or Apis mellifera. b means that the gene was merely named numerically due to lack of orthologs in other insect species. The accession numbers are from different protein resources. Those labeled as "NP", "XP" and "hmm" are from 'RefSeq protein', 'Non-RefSeq protein' and 'Ab initio protein' databases, respectively.

Table 2. Table 2. Coding regions, intron location and length of 54

 ApbHLH motifs.

		Genomic	coding seq	uence(s) Coding	Intron (location,		
Family	Gene name	Contig No.	Frame	region(s)	length)	Group	
ASCb	ApASCb	NW_001917183.1	3	18063-18160	Loop: 4563bp	А	
ASCO	лрязев	NW_001917103.1	3	22724-22787	L00p. 45050p	A	
E12/E47	ApDa	NW 001932971.1	-3	5307-5278	Basic: 390bp	А	
0.0000000000	1000000		-3	4842-4714		2559	
Ngn	ApTap	NW_001924998.1	2	88937-89095		A	
Mist	ApMistr1	NW_001938180.1	2	23615-23677	Helix 1: 7882bp	Α	
100000			2	31601-31696		10.23	
Mist	ApMistr2	NW_001918733.1	-2	30557-30495	Helix 1: 2304bp	A	
D			-2	28190-28095		-	
Beta3	ApOli	NW_001917515.1	-1	154686-154522		A	
Atonal	ApCato	NW_001925016.1	-3	50328-50167-		A	
Atonal	ApAto	NW_001922225.1	-1	195743-195585		A	
Atonal	ApAtonal1	NW_001938652.1	1	55849-56007		A	
Net	ApNet	NW_001938652.1 NW_001936417.1	-1	187017-186859		A	
MyoR	ApMyoR		-3	27044_26886		A	
Delilah	ApDel	NW_001921951.1	1	32101-32277		A	
Mesp	ApSage	NW 001923944.1	1	16921-17052	Helix 2: 7107bp	A	
			1	24160-24189			
Paraxis	ApPxs	NW 001917684.1	-2	26779-26736	Helix 1: 109bp	A	
	2		-3	26626-26512			
Twist	ApTwi	NW_001935314.1	1	46567-46722		A	
PTFa	ApFer1	NW_001923357.1	2	22925-23083		A	
PTFb	ApFer2	NW_001934059.1	2	40763-40921		Α	
PTFb	ApFer3	NW_001934211.1	1	51178-51336		Α	
Hand	ApHand	NW_001935894.1	-1	59779-59621		A	
SCL	ApSCL	NW 001924455.1	-3	44157-44018	Helix 2: 8156bp	А	
			10000	35862-25844		<u>a</u>	
NSCL	ApNSCL	NW_001916472.1	-3	91988-91830		Α	
Mnt	AnMat	NW_001919193.1	3	78591-78740	Helix 2: 5087bp	в	
witt	ApMnt	1. W_001919195.1	2	83828-83836		в	
			-1	220800-220763	Loop: 3918bp		
Mad	1011-1	NW 001021410 1	-1	216844-216730	Helix 2:	в	
wiad	ApMad	NW_001931419.1	-1	210844-216/30	30718bp	в	
			-2	186011-186003			
Max	ApMax1	NW 001918063.1	-2	90852-90694		В	
Max	ApMax2	NW 001931491.1	-3	3315-3157		В	
Max	ApMax3	NW 001935958.1	1	29788-29946		В	
Мус	ApDm	NW 001931984.1	-1	110536-110375		В	
			-2	24663-24541			
USF	ApUSF	NW_001917134.1	-2	22911-22861	Loop: 1629bp	в	
Tenana	11. 1221	0.0000000000000000000000000000000000000	1	4765-4875	C 00000000	12.43	
AP4	ApCrp	NW_001935115.1	1	28165-28209	Loop: 23289bp	в	
de entre	C2 8948 4252		-1	27426-27265	0.000	859	
TF4	ApBmx1	NW_001935304.1	-2	26894-26886	Loop: 370bp	в	
	-		1	5059-5220,			
TF4	ApBmx2	NW_001920521.1			Helix 2: 628bp	в	
MIN	1-10 V	NIN/ 0010172601	2	5849-5857		D	
MLX	ApMLX	NW_001917260.1	-3	5328-5164		В	
SREBP	ApSREBP	NW_001919193.1	-3	91249-91151	Loop: 71bp	в	
		10-10-10-10-10-10-10-10-10-10-10-10-10-1	-2	91079-91026		57 B. F	
	1.000		1	65269-65276	Basic: 7719bp		
SRC	ApTai	NW_001935890.1	1	72996-73158	Helix 2: 2082bp	В	
			1	75241-75243			
Clock	ApClk	NW_001927661.1	3	18999-19003	Basic: 74bp	С	
	1.000		2	190078-190225			
Clock	ApRst(1)JH		3	103248-103409		С	
AHR	ApDys	NW_001938087.1	-3	33505-33344		С	
AHR	ApSs	NW_001933871.1	3	88950-89111		С	
Sim	ApSim	NW_001938176.1	2	52175-52336		С	
Trh	ApTrh	NW_001932608.1	2	11282-11443		С	
HIF	ApSima	NW_001935860.1	3	95013-95174	No	С	
ARNT	ApTgo	NW_001927816.1	2	127112-127113	Basic: 11117bp	С	
	1.80		1	138231-138390	and minop	~	
BMAL	ApCyc	NW_001922094.1	-2	169013 -169017	Basic: 518bp	С	
	0.631 (6)	2 T 2	-1	168498-168342	Susie. 5180p		
Emc	ApEmc	NW_001924511.1	-1	29584-29486		D	
Hey	ApHey	NW_001922769.1	-3	108188-108021		E	
Hey	ApStich1a	NW_001934199.1	2	183026-183193		E	
Hey	ApStich1b	NW 001918065.1	2	100964-100971	Basic: 62bp	Е	
incy	Apsilento	001918005.1	1	101034-101185		E	
	ApH		-1	6752-6747	Basic: 1857bp		
H/E(spl)		NW_001932152.1	-1	4889-4776	Loop: 74bp	E	
51590		100	-3	4701-4648			
H/E(spl)		NW_001917026.1	1	7633-7638	Basic: 913bp		
	ApDpn		2	8552-8647	Loop: 3832bp	E	
	- sometod		3	12480-12551			
H/E(spl)		NW_001936436.1	2	73498-73504	Basic: 13384bp		
	ApSide		3	86889-86984	Loop: 73bp	E	
			1	87058-87129			
U/E(a-D	AnHERI	NW 001020956 1	2	34958-34963	Design 60.41-	r.	
H/E(spl)	ApHES1	NW_001920856.1	3	35565-35732	Basic: 604bp	E	
H/E(spl)			-1	40930-40925	Basic: 1069bp		
	ApHES2	NW_001918124.1	-2	39855-39766	Loop: 93bp	E	
			-2	39672-39595		-	
	1		1	11104-11223	Basic: 192bp		
H/E(spl)	ApHES3	NW_001923890.1	1	11416-11508	Loop: 1567bp	Е	
H/E(spl)	npillo5		2	13076-13159	200p. 10070p	D.	
	-			59578-50578	Basic: 194bp		
COF	ApKn (col)	NW 001916783.1	1	50773-50861		10000	
COE	Ankr lant	NW 001016792 1	3		Loop: 914bp	F	