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Overview: the links that bind aquatic ecosystems

Dominic T. Chaloner1

Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556 USA

Roger S. Wotton2

Division of Biosciences, University College London, London WC1E 6BT UK

Abstract. Aquatic research historically has focused on separate aquatic ecosystems (i.e., freshwater,
estuarine, and marine). We argue that this separation into subdisciplines is artificial and may even be
counterproductive. Instead, scientists should consider the physical linkages between different aquatic
ecosystems and the many similarities in properties and processes among those ecosystems (conceptual
linkages). The 4 papers in this J-NABS BRIDGES cluster demonstrate the value of integrating information
from different aquatic ecosystems. For example, the papers illustrate that transformation and
transportation of nutrients and energy physically and conceptually link all aquatic ecosystems and are
facilitated by the characteristics of the medium that defines them all—water. To promote the exchange of
information within aquatic science, more interecosystem studies should be published in journals and
books so that scientists will see parallels and linkages among freshwater, estuarine, and marine systems.
Over the longer term, such studies would benefit from the funding and teaching of aquatic science as an
integrated whole.

Key words: research integration, marine, freshwater, estuarine, interecosystem research.

Freshwater, estuarine, and marine ecosystems are
linked by the medium that defines them all—water.
Historically, the different subdisciplines of aquatic
science have developed independently. This separa-
tion has been reinforced by obvious differences in
organisms, chemical composition, and the size of the
aquatic ecosystem studied (Dobson and Frid 1998).
Broader integration of research from different aquatic
ecosystems has been limited despite the enormous
growth of knowledge over the last 50 y. Aquatic
scientists are aware of the connections or linkages
between aquatic ecosystems, and cross- or intereco-
system studies have been published in journals (e.g.,

Hecky and Kilham 1988, Amon and Benner 1996,
Elser et al. 2007) and books (e.g., Maser and Sedell
1994, Wotton 1994, Dobson and Frid 1998). However,
the presence of such linkages is not reflected more
generally in published aquatic research, which re-
mains largely separated by subdiscipline.

The titles and contents of many aquatic journals
(e.g., Freshwater Biology, Marine Ecology Progress
Series, River Research and Applications) suggest lack
of integration within aquatic science. For example,
Lamberti et al. (2010) found that .75% of articles
published in J-NABS were concerned exclusively with
fresh waters. Furthermore, an evaluation of 50 of the
most-cited and of the most recently published J-NABS
papers indicated that ƒ7%, on average, of the
citations in those articles were to marine or estuarine
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journals or to journals more broadly aquatic in their
subject matter (Table 1). The freshwater benthos is the
publication niche for J-NABS, so a predominance of
freshwater studies is not surprising. Furthermore, a
freshwater focus is appropriate for some research
topics, such as stream restoration, to which the
contribution of marine and estuarine research is likely
to be limited. However, the predominance of fresh-
water citations suggests little consideration of re-
search from estuaries, marine coasts, and oceans or
that researchers in these ecosystems do not consider J-
NABS as a publication outlet for their work. The lack
of integration in journals reflects the current separa-
tion and arguably reinforces the continued separation
of research in freshwater and marine ecosystems.

Our central argument is that aquatic science would
benefit from better integration of knowledge from all
types of water bodies. Given the technological advances
that facilitate the acquisition, analysis, and sharing of
information, more integration of research from aquatic
subdisciplines seems a reasonable expectation. Such
interecosystem studies also require a more holistic view
of aquatic science in which different water bodies are
studied comparatively to reflect similarities in proper-
ties and processes among those ecosystems (conceptual
linkages) and, as broadly as practical, to reflect physical
linkages among aquatic ecosystems. Such interecosys-
tem studies reveal important similarities and differences
and allow the establishment of general frameworks
from which further hypotheses are generated.

Interecosystem studies that have been published
provide important insights into many different
aspects of aquatic ecosystems. A summary of these
studies (Table 2) shows that their authors considered
a variety of aquatic organisms (e.g., viruses, bacteria,
algae, fish), processes (e.g., denitrification, respira-
tion), physicochemical factors (e.g., ultraviolet light,

nutrient availability), and materials (e.g., particulate
organic matter, dissolved organic matter). The studies
were focused generally on ecosystem structure (e.g.,
species composition) over function (e.g., respiration)
and usually on lower (e.g., viruses, bacteria, algae)
rather than higher trophic levels (e.g., invertebrates,
fish). The few studies of ecosystem function ad-
dressed nutrient cycling (e.g., nutrient limitation)
rather than energy flow (e.g., C sources). Most
interecosystem studies were focused exclusively on
the pelagic habitat (60%), and fewer considered the
benthic (16%) or both the pelagic and benthic (24%)
habitats. Most studies compared freshwater and
marine ecosystems (64%), whereas the remainder of
the studies (36%) also included estuarine ecosystems
in their comparisons. Published information, either as
literature surveys or, most recently, in meta-analyses
was used in ,½ of the studies, whereas new data
were generated from experimental manipulations
or field sampling, often complemented by litera-
ture surveys, in the other ½. Not surprisingly, the
explicitly cross-ecosystem journal Limnology and
Oceanography has published the most interecosystem
studies (34% of articles considered), whereas the other
journals, including J-NABS, have published far fewer
(,8%).

Interecosystem studies published to date highlight
several important features of aquatic ecosystems.
First, similarities among aquatic ecosystems (40%)
are almost as evident as differences (46%); the
remaining 14% found both similarities and differenc-
es in the same study. Similarities include the effects of
light (Sommaruga et al. 1997, Bancroft et al. 2007) and
nutrient limitation (e.g., Guildford and Hecky 2000,
Elser et al. 2007) on aquatic organisms. Second,
differences that exist between aquatic ecosystems
appear to reflect the local environmental context,
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TABLE 1. Summary of citations given in J-NABS publications, either in the 50 most-cited (1988–2002) or 50 most recently
published (2009–2010). Citations were categorized according to the aquatic ecosystem or combination of ecosystems that
were studied.

Ecosystem(s) studied

50 most-cited papers 50 most-recent papers

Number % Number %

Freshwater 3174 79.03 2120 74.26
Estuarine 2 0.05 6 0.21
Marine 69 1.72 71 2.49
Marine–freshwater 8 0.20 11 0.39
Marine–estuarine 0 0 0 0
Freshwater–estuarine 11 0.27 1 0.04
Marine–estuarine–

freshwater
153 3.81 98 3.43

Not aquatic (e.g.,
taxonomy)

599 14.92 548 19.19

Total citations 4016 2855
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Á

lv
ar

ez
-

C
o

b
el

as

20
06

B
G

C
D

en
it

ri
fi

ca
ti

o
n

35
9

E
,

F
,

M
B

M
A

D

S
ei

tz
in

g
er

et
al

.
20

06
E

A
D

en
it

ri
fi

ca
ti

o
n

91
23

E
,

F
,

M
B

L
S

S
S

m
it

h
20

06
L

O
E

ff
ec

ts
o

f
n

u
tr

ie
n

ts
o

n
p

h
y

to
p

la
n

k
to

n
45

11
E

,
F

,
M

P
L

S
S

S
o

m
m

er
an

d
S

o
m

m
er

20
06

O
E

C
C

o
n

tr
o

ls
o

n
p

h
y

to
p

la
n

k
to

n
20

5
F

,
M

P
E

,
L

S
D

V
en

tu
ra

20
06

M
E

P
S

Z
o

o
p

la
n

k
to

n
el

em
en

ta
l

co
m

p
o

si
ti

o
n

13
3

F
,

M
P

L
S

D
,

S

B
an

cr
o

ft
et

al
.

20
07

E
L

E
ff

ec
ts

o
f

u
lt

ra
v

io
le

t
li

g
h

t
34

11
F

,
M

P
,

B
M

A
S

E
ls

er
et

al
.

20
07

E
L

N
u

tr
ie

n
t

li
m

it
at

io
n

o
f

p
ri

m
ar

y
p

ro
d

u
ce

rs

13
9

46
F

,
M

P
,

B
M

A
S

F
il

ip
p

in
i

an
d

M
id

d
el

b
o

e
20

07
F

M
E

P
el

ag
ic

an
d

b
en

th
ic

v
ir

al
ab

u
n

d
an

ce
12

4
E

,
F

,
M

P
,

B
S

D
,

S

H
il

le
b

ra
n

d
et

al
.

20
07

P
N

A
S

C
o

n
tr

o
ls

o
f

p
ro

d
u

ce
r

d
iv

er
si

ty
31

10
F

,
M

P
,

B
M

A
D

S
te

rn
er

et
al

.
20

08
L

O
S

es
to

n
st

o
ic

h
io

m
et

ry
9

5
F

,
M

P
L

S
S

H
il

le
b

ra
n

d
20

09
JP

G
ra

ze
r

co
n

tr
o

l
o

f
p

er
ip

h
y

to
n

b
io

m
as

s

2
2

F
,

M
B

M
A

S

a
Jo

u
rn

al
ab

b
re

v
ia

ti
o

n
s:

A
E

M
=

A
p

p
li

ed
E

n
v

ir
o

n
m

en
ta

l
M

ic
ro

b
io

lo
g

y
,

A
M

E
=

A
q

u
at

ic
M

ic
ro

b
ia

l
E

co
lo

g
y

,
A

S
=

A
q

u
at

ic
S

ci
en

ce
,

B
G

C
=

B
io

g
eo

ch
em

is
tr

y
,

C
JF

A
S

=
C

an
ad

ia
n

Jo
u

rn
al

o
f

F
is

h
er

ie
s

an
d

A
q

u
at

ic
S

ci
en

ce
s,

E
A

=
E

co
lo

g
ic

al
A

p
p

li
ca

ti
o

n
s,

E
C

O
=

E
co

lo
g

y
,

E
L

=
E

co
lo

g
y

L
et

te
rs

,
E

P
=

E
n

v
ir

o
n

m
en

ta
l

P
o

ll
u

ti
o

n
,

E
S

T
=

E
st

u
ar

ie
s,

F
M

E
=

F
ed

er
at

io
n

o
f

E
u

ro
p

ea
n

M
ic

ro
b

io
lo

g
y

S
o

ci
et

ie
s

M
ic

ro
b

io
lo

g
y

E
co

lo
g

y
,

G
C

A
=

G
eo

ch
im

ic
a

et
C

o
sm

o
ch

im
ic

a
A

ct
a,

JP
=

Jo
u

rn
al

o
f

P
h

y
co

lo
g

y
,

JP
R

=
Jo

u
rn

al
o

f
P

la
n

k
to

n
R

es
ea

rc
h

,
J-

N
A

B
S

=
Jo

u
rn

al
o

f
th

e
N

o
rt

h
A

m
er

ic
an

B
en

th
o

lo
g

ic
al

S
o

ci
et

y
,

L
O

=
L

im
n

o
lo

g
y

an
d

O
ce

an
o

g
ra

p
h

y
,

M
E

P
S

=

M
ar

in
e

E
co

lo
g

y
P

ro
g

re
ss

S
er

ie
s,

M
E

=
M

ic
ro

b
ia

l
E

co
lo

g
y

,
N

A
T

=
N

at
u

re
,

O
E

C
=

O
ec

o
lo

g
ia

,
P

N
A

S
=

P
ro

ce
ed

in
g

s
o

f
th

e
N

at
io

n
al

A
ca

d
em

y
o

f
S

ci
en

ce
s

o
f

th
e

U
n

it
ed

S
ta

te
s

o
f

A
m

er
ic

a

2011] BRIDGES 755

Downloaded From: https://complete.bioone.org/journals/Journal-of-the-North-American-Benthological-Society on 19 May 2025
Terms of Use: https://complete.bioone.org/terms-of-use



such as water movement and sediment composition
(e.g., Mermillod-Blondin and Rosenberg 2006), nutri-
ent concentrations (e.g., Guildford and Hecky 2000,
Elser et al. 2007), and C sources (e.g., Baines and Pace
1991, Amon and Benner 1996), rather than just the
more obvious differences among ecosystems in
organisms, salinity, or size (e.g., Seitzinger et al.
1991). Third, many areas of aquatic science have not
been considered from an interecosystem perspective.
Examples of where an interecosystem comparison
would be worthwhile include invertebrate functional
groupings, allochthonous vs autochthonous inputs,
and a comparison of structural and functional metrics.

The papers in this BRIDGES cluster demonstrate
the benefits of a broader integration of research from
different aquatic ecosystems. Collectively, Mermillod-
Blondin (2011), Petticrew et al. (2011), and Wotton
(2011) describe how diverse aquatic organisms (e.g.,
microorganisms, oligochaetes, polychaetes, insects,
gastropods, and fish) and their products (e.g., tubes,
burrows, feces, mucus, silk, chitin, carcasses, and
dissolved organic matter) influence the nutrient and
energy fluxes within and between aquatic ecosystems.
Articles in this BRIDGES cluster also demonstrate
that ecological similarities among disparate aquatic
ecosystems are equal to and can be larger than the
differences, as others have argued (e.g., Dobson and
Frid 1998). For example, Mermillod-Blondin (2011)
makes a compelling case for considering the role of
water flow in both freshwater and marine ecosystems
(cf. Legendre and Demers 1984). Wotton (2011)
stresses the importance of exudates to aquatic biota
and their role in the dynamics of organic matter in all
water bodies. Articles in this BRIDGES cluster also
illustrate how aquatic ecosystems, in general, are
replete with physical and conceptual linkages, all
underpinned by the presence of water. Highlighted
physical linkages include the movement of organic
matter within, and between different water bodies
(Petticrew et al. 2011, Wotton 2011) and conceptual
linkages include the role of environmental context
(Mermillod-Blondin 2011, Petticrew et al. 2011). Water
facilitates linkages among aquatic systems by virtue
of its physical and chemical characteristics, such as
high specific-heat capacity, the nonlinear relationship
between its density and temperature, high viscosity,
and capacity to dissolve more substances than any
other liquid (Dobson and Frid 1998). These character-
istics and the aquatic organisms that have evolved in
response to them influence the capacity of aquatic
ecosystems to transport and transform nutrients and
energy.

Water provides an exceptional transportation sys-
tem because it is a universal solvent and has high

viscosity. As a universal solvent, water dissolves
many substances and holds them in solution wher-
ever they are carried. The high viscosity of water
facilitates passive and active movement of aquatic
organisms and their products (Mermillod-Blondin
2011, Petticrew et al. 2011, Wotton 2011). Thus, water
is an effective delivery system of dissolved and
particulate matter via currents that organisms gener-
ate and currents that already exist. One consequence
is that suspension feeders are present in all aquatic
ecosystems (Wotton 1994, Dobson and Frid 1998).
Movements of organisms and their products, in turn,
constitute important linkages within and between
aquatic ecosystems. Examples include benthic–pelagic
coupling (e.g., Blumenshine et al. 1997), upstream–
downstream (e.g., Mulholland et al. 1995) and surface–
subsurface connections (e.g., Valett et al. 1997), and
movements between aquatic ecosystems (e.g., Chal-
oner et al. 2004). Mermillod-Blondin (2011) and Wotton
(2011) provide examples of how organisms facilitate
benthic–pelagic linkages, which have been neglected
by some branches of aquatic research (Lamberti et al.
2010) and certainly have yet to be compared among
ecosystems.

The physicochemical characteristics of water and the
actions of organisms also facilitate the transformation of
material. Examples include the generation of flocs, or
‘snow’, from dissolved organic matter resulting from
chemical, physical, and biological processes (Wotton
2011). Consumers also transform organic material by
compacting egested material into fecal pellets that sink
to form biodeposits (Mermillod-Blondin 2011) or are
carried away by currents (Wotton 2011). In addition,
aquatic organisms create biogenic structures from
organic and inorganic material and act as ecosystem
engineers (e.g., Mermillod-Blondin and Rosenberg
2006). Such transformations can have profound effects
on the pelagic and benthic environment (Mermillod-
Blondin 2011, Petticrew et al. 2011, Wotton 2011).
Producers and consumers release compounds directly
into the surrounding water (Petticrew et al. 2011,
Wotton 2011) where these exudates are transformed
or metabolized, often rapidly, by other organisms (e.g.,
Baines and Pace 1991, Amon and Benner 1996,
Malinsky-Rushansky and Legrand 1996). Such trans-
formations are facilitated by interfaces that are abun-
dant in all aquatic ecosystems (Naiman et al. 1988),
especially those between sediments and overlying
water (Mermillod-Blondin 2011, Petticrew et al. 2011,
Wotton 2011). Organisms and resources are brought
together at these interfaces for important biogeochem-
ical transformations.

Some aquatic organisms can facilitate both the
transport and transformation of material among
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systems. Pacific salmon (Oncorhynchus spp.) provide
one such example (Petticrew et al. 2011). Salmon
transport nutrients and energy as they migrate from
the ocean via estuaries to fresh waters where they
spawn and die. The marine-derived nutrients they
deliver as carcasses, gametes, and excretory products
are an important ecosystem resource subsidy (Polis
et al. 2004) that increases growth and abundance of
freshwater producers and consumers (e.g., Chaloner
and Wipfli 2002, Chaloner et al. 2004). Salmon
spawners also act as ecosystem engineers (Wright
and Jones 2006) by constructing redds or nests, which
transform sediment size and topography and alter
biofilm and invertebrate abundance (e.g., Moore et al.
2004). A considerable amount research has accumu-
lated about the ecology of Pacific salmon (see Quinn
2005), but a comprehensive interecosystem study of
their ecological role has yet to be done.

Interecosystem studies suggest that information
must be integrated at contrasting spatial and temporal
scales. For example, microorganisms use exudates
and particles aggregate and fragment at smaller scales
(i.e., mm–m, s–d), whereas water currents move
particles over large distances and at larger time scales
(i.e., km–103 km, days to 10 y) (Wotton 2011).
Similarly, the construction of biogenic structures by
invertebrates (Mermillod-Blondin 2011) occurs over
small spatial and temporal scales but may modify
substratum characteristics that persist over larger
scales. Last, disturbance associated with salmon
spawning redds occurs at smaller spatial scales and
persists for limited time (Petticrew et al. 2011),
whereas salmon migrations take place over larger
scales. Also, the nutrient-enrichment effects of salmon
carcasses occur downstream, in adjacent riparian and
hyporheic habitats, and as carryover effects beyond
the salmon run and into the subsequent year. The role
of organisms in the transformation and transportation
of organic material should be compared among
aquatic ecosystems. For example, the extent to which
egestion, excretion, construction, and bioturbation
influence the quality and quantity of material present
should be determined by using functional groupings
(Mermillod-Blondin 2011). The significance of such
activities may be indicated by the abundance or diet
of organisms. Last, the role of environmental context
in the similarities, differences, and linkages among
aquatic ecosystems should be considered (Mermillod-
Blondin 2011, Petticrew et al. 2011, Wotton 2011).

Several broader recommendations to encourage a
more holistic, integrated approach to aquatic research
are evident from this BRIDGES cluster. Recommen-
dations have been made for interdisciplinary research
(Committee on Inland Aquatic Ecosystems 1996,

National Academies 2004, Lamberti et al. 2010), but
we make recommendations specifically for intereco-
system studies in aquatic science. Such recommendations
extend beyond academic institutions to professional
societies, publishers, and funding agencies involved
in aquatic research.

Academic institutions should encourage interecosys-
tem research in the aquatic sciences. Organizations exist
to assist with such endeavors. These organizations
include the National Center for Ecological Analysis
and Synthesis (NCEAS; www.nceas.ucsb.edu/; Andel-
man et al. 2004), and the John Wesley Powell Center
for Analysis and Synthesis (US Geological Survey;
powellcenter.usgs.gov/). Such efforts are part of a
larger interdisciplinary movement to facilitate the
synthesis of data (Parr and Cummings 2005). NCEAS
encourages use of existing data to address major issues
in ecology and, in so doing, encourages application of
science to management and policy issues. NCEAS
argues that it can influence how science is conducted
and facilitate understanding by fostering the collabora-
tions and data sharing that enables the synthesis and
analysis of scientific information, a view that is in line
with our central argument. Specific interecosystem
studies have benefited from the NCEAS (Shurin et al.
2002, Elser et al. 2007), and these studies have had a
significant effect (Table 2). Still, the usefulness of such
an approach depends, in part, upon the research
questions being asked.

The scientific community should encourage re-
search questions that embrace different aquatic
ecosystems. Such questions should include the role
of scale because many phenomena can exist over
different spatial and temporal scales. For example, use
of dissolved organic matter takes place at exception-
ally small scales, whereas movement of nutrients and
energy can occur at much larger spatial and temporal
scales. Such questions also should extend beyond the
identities and feeding strategies of organisms, wheth-
er consumers or predators, to consider them as
transporters and transformers of nutrients and energy
(i.e., organisms are important not just because of
what they eat, but what they excrete, egest, and
build). Arguably, studies involving functional feeding
groups (Cummins 1974) and stoichiometry (Elser
et al. 2000) have encouraged the perspective reflected
in the content of this cluster of BRIDGES papers.
Generation of new data, or integration of existing
information, could further facilitate such comparative
studies in aquatic science.

Data generation and integration needed for inter-
ecosystem studies are realistic goals given the availa-
bility and reduced cost of techniques for producing
(e.g., compound separation and characterization) and
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analyzing (e.g., Geographical Information Systems)
such data, especially at larger and smaller scales.
Powerful database tools (e.g., Web of ScienceTM) allow
relevant literature to be found and analyzed more
easily. Such analyses require new modeling and
statistical approaches (Hobbs and Hilborn 2006), in-
cluding meta-analysis tools that enable analysis of data
from several independent studies as one data set
(Gurevitch et al. 2001). Meta-analysis already has
provided important insights in ecology and especially
interecosystem research (Hillebrand 2002, 2009, Piña-
Ochoa and Álvarez-Cobelas 2006, Bancroft et al. 2007,
Elser et al. 2007). Such tools will only be used to generate
new data if aquatic scientists are trained in their use and
application.

Broader-based programs are needed to train aquat-
ic scientists. The compelling argument made by
Wetzel (1996) for broader training in limnology is
appropriate for aquatic science in general. However,
underlying philosophies differ among subdisciplines
of aquatic science. Dobson and Frid (1998) remarked
that scientists in different aquatic subdisciplines often
use different terms for the same thing and the same
terms for different things. For example, collector-
gatherers (freshwater biology; Cummins 1974) and
deposit feeders (marine biology; Dobson and Frid
1998) have the same feeding method. In contrast,
littoral zone refers to the ‘illuminated shallows’ in
freshwater biology and to the intertidal in marine
biology (Dobson and Frid 1998). Broader training of
aquatic biologists and the publication of interecosys-
tem studies and books with a broader aquatic
perspective (Maser and Sedell 1994, Wotton 1994,
Dobson and Frid 1998) would help reconcile these
contrasts in philosophies and terminology.

Journal editors, especially those of journals with
broad scope (e.g., J-NABS) should encourage publi-
cation of interecosystem aquatic research, a call
already made by others (e.g., Lamberti et al. 2010).
Individuals with research experience in several
ecosystems could be included on editorial boards,
and special issues concerned with such research could
be created. Many journals publish special issues (e.g.,
Danovaro et al. 2008) or have developed sections
(e.g., J-NABS BRIDGES) in which the existence and
importance of interecosystem research can be high-
lighted. However, peer review of such manuscripts
will require recruitment of referees with broad
experience and knowledge of aquatic science.

Many important physical and conceptual linkages
among aquatic ecosystems exist because water defines
them all. We think integration of research across
aquatic ecosystems is important, realistic, and has
much potential. However, many gaps exist in our

knowledge, and the success of the kind of holistic
research needed to fill those gaps depends upon the
involvement and support of the entire community of
aquatic scientists.
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