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Waterfowl management in the United States is one of the more visible con­
servation success stories in the United States. It is authorized and supported 
by appropriate legislative authorities, based on large-scale monitoring programs, 
and widely accepted by the public. The process is one of only a limited num­
ber of large-scale examples of effective collaboration between research and 
management, integrating scientific information with management in a coher­
ent framework for regulatory decision-making. However, harvest management 
continues to face some serious technical problems, many of which focus on 
sequential identification of the resource system in a context of optimal deci­
sion-making. The objective of this paper is to provide a theoretical founda­
tion of adaptive harvest management, the approach currently in use in the United 
States for regulatory decision-making. We lay out the legal and institutional 
framework for adaptive harvest management and provide a formal descrip­
tion of regulatory decision-making in terms of adaptive optimization. We dis­
cuss some technical and institutional challenges in applying adaptive harvest 
management and focus specifically on methods of estimating resource states 
for linear resource systems.
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The regulation o f waterfowl harvests in the United 
States involves public announcem ents, deliberations, 
and joint decision making by the federal and state gov­
ernments. The federal governm ent derives its respon­
sibility for establishing sport-hunting regulations from 
the M igratory Bird Treat Act o f 1918 (as amended), 
which im plem ents provisions of international treaties 
for m igratory bird conservation. The Act directs the 
Secretary of Agriculture to periodically adopt hunting 
regulations for m igratory birds, &ldquo;having due regard to 
the zones of tem perature and to the distribution, abun­
dance, econom ic value, breeding habits, and times 
and lines of m igratory flight o f such birds&rdquo; (U.S. D e­
partm ent o f the Interior 1975). The responsibility for

managing migratory bird harvests has since been passed 
to the Secretary of the Interior and the U.S. Fish and 
Wildlife Service. Other legislative acts, such as the Na­
tional Environmental Policy Act, the Endangered Spe­
cies Act, the A dm inistrative Procedures Act, the Free­
dom of Information Act and the Regulatory Flexibility 
Act, provide additional responsibilities in the develop­
ment o f hunting regulations, and help define the nature 
o f the regulatory process (Blohm 1989).

An essential elem ent of harvest regulations is the 
annual collection and analysis o f  data on breeding 
population status, harvest levels, survival, production, 
migration and other population characteristics (Smith, 
Blohm, Kelly & Reynolds 1989). Long-term databases
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of m onitoring data are used to estimate key population 
parameters such as survivorship and reproduction, and 
to predict harvest im pacts on population dynam ics 
(Nichols, Conroy, Anderson & Burnham 1984, Johnson, 
S parling  & C ow ard in  1987, Johnson , N ichols & 
Schwartz 1992). The inform ation thus accum ulated is 
folded into waterfowl population &lsquo;models&rsquo;, which in turn 
are used to inform the regulations process (Cowardin 
& Johnson 1979, Johnson, Nichols, Conroy & Cowardin 
1988, W illiams & Nichols 1990).

Though biologists have long recognized a need for 
informative harvest management (Anderson & Burnham 
1976, Nichols et al. 1984, Montalbano, Johnson, Miller 
& Rusch 1988, W illiams & Nichols 1990), tradition­
ally the regulation of waterfowl harvests has not focused 
on uncertainty about regulations impacts. N or has the 
opportunity to use regulations to reduce uncertainty been 
exploited. An unfortunate result is an unnecessarily slow 
rate o f learning about population dynamics, and a cor­
respondingly slow rate of improvement in management 
over time.

The harvest regulations process

M ost waterfowl hunting regulations are established 
annually, within a tim etable that is constrained by the 
timing of biological surveys and the need to give states 
and the public an opportunity to influence regulations. 
The annual regulatory cycle includes analysis and in­
terpretation of biological data, developm ent of regu­
latory proposals and solicitation of public com ment, 
leading in turn to the prom ulgation and publication of 
hunting regulations in the autumn of each year.

A key com ponent o f the regulatory process consists 
o f data collected each year on population status, habi­
tat conditions, production, harvest levels and other 
system attributes o f managem ent interest (Smith et al. 
1989). Population and habitat monitoring is essential 
for discerning resource status and m odifying hunting 
regulations in response to changes in environmental con­
ditions. The system of waterfowl monitoring in North 
Am erica is unparalleled in its scope and is made pos­
sible only by the cooperative efforts of the U.S. Fish 
and W ildlife Service, the Canadian W ildlife Service, 
state and provincial w ildlife agencies and various re­
search institutions.

Each year m onitoring data are used to estim ate key 
population param eters such as survival and reproduc­
tive rates, and to associate levels o f harvest w ith var­
ious regulatory scenarios (Martin, Pospahala & Nichols 
1979). These and other estimators are com bined to

produce and refine dynamic population models, which 
describe how waterfowl abundance varies in response 
to harvest and uncontrolled  environm ental factors 
(W illiams & Nichols 1990). These models in turn are 
used to inform the regulations process, on assumption 
that population status is directly related to harvest and 
harvest can be predicted as a function of hunting reg­
ulations (Johnson, W illiams, Nichols, Hines, Kendall, 
Smith & Caithamer 1993). By building on accumulated 
m onitoring data, these m odels constantly evolve to 
reflect a growing understanding of waterfowl popula­
tion dynam ics and the impacts of harvest.

Unfortunately, the modeling o f waterfowl populations 
and their harvest continues to be characterized by great 
uncertainty. In many cases, the sheer number and com ­
plexity of hunting regulations, com bined with inade­
quate replication and experim ental controls, has pre­
cluded reliable inference about the relationship between 
regulations and harvests (Nichols & Johnson 1989). 
M anagers know even less about the im pact o f harvest 
on subsequent waterfowl population size. Particularly 
problem atic in this regard are questions about the 
nature o f density-dependent population regulation, 
which provides the theoretical basis for sustainable 
exploitation (Hilborn, Walters & Ludwig 1995). U n­
certainties about the relationships among hunting reg­
ulations, harvest and population size constitute a prin­
cipal source of controversy in the regulations-setting 
process.

In response to frustrations about the continuing lack 
o f the biological understanding needed to inform har­
vest regulations, in 1995 the U.S. Fish and W ildlife 
Service im plem ented a new system to harvest regula­
tion under the nam e of adaptive harvest managem ent 
(AHM). This system is a rather formalized example o f 
Adaptive Resource Management (Holling 1978, Walters 
1986), which often is described in terms of &lsquo;m anage­
m ent by experim ent&rsquo; or &lsquo;learning by doing&rsquo; (Walters & 
Holling 1990). An appropriate definition for AHM  is 
&lsquo;management in the face of uncertainty, with a focus on 
its reduction&rsquo; (Williams & Johnson 1995). An adaptive 
approach to harvest regulations em phasizes uncer­
tainty about regulatory effects, and incorporates uncer­
tainty as a factor guiding management actions (Johnson 
et al. 1993). The goal is to reduce uncertainty over time, 
and thereby im prove long-term  management.

Operational elements of adaptive harvest 
management

Adaptive harvest m anagem ent explicitly accounts for
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uncertainty and the value of inform ation in the regu­
latory process, recognizing that there are at least four 
identifiable sources (W illiams 1997). The first and 
most obvious is uncontrollable (and sometimes unrec­
ognized) environm ental variation, which influences 
biological processes and induces stochasticity in pop­
ulation dynam ics. The second is uncertainty about 
resource status, called partial observability to indicate 
lim itations in on e’s ability to observe a resource sys­
tem through monitoring. A third source of uncertain­
ty is referred to as partial controllability, to em phasize 
the limited influence of management decisions on har­
vest and other actions. Finally, structural uncertainty 
concerns the lack of understanding (or lack of agree­
ment) about the structure of biological relationships, 
such as the influence of harvest on survivorship. Envi­
ronm ental variation, structural uncertainty, partial ob­
servability and partial controllability all limit a manag­
er’s ability to make informed regulatory decisions (Nich­
ols, Johnson & W illiams 1995).

Along with an institutional framework and appropriate 
m onitoring program s as described above, four ele­
ments are definitive of the adaptive process for setting 
waterfowl regulations:

1) An array of regulatory options that are available 
for the regulation of waterfowl harvest. These op­
tions include various combinations of regulations 
representing, e.g. &lsquo;restrictive&rsquo;, &lsquo;liberal&rsquo;, and &lsquo;m od­
erate&rsquo; regulations, with possible constraints on 
allowable fluctuations from year to year. The set 
o f feasible regulatory options can be lim ited or 
expanded as the need and desirability to do so is 
recognized by management.

2) An objective function by which to evaluate and 
com pare these options. The general form of the 
objective function is a weighted sum of harvests 
(or harvest utilities) over some recognized time 
frame. This is in keeping with traditional goals for 
waterfowl harvest management, and ensures that 
the focus is on harvest and harvest opportunity. A 
long tim e fram e and harvest utilities that devalue 
harvest at low population sizes provide a conser­
vation perspective, by preventing excessive har­
vest in the short term and thereby ensuring long­
term sustainability.

3) A set o f waterfowl models representing an array 
o f m eaningful hypotheses about the im pact of 
regulations on waterfowl populations. For exam ­
ple, the set currently in use includes models that 
incorporate the hypothesis o f additive hunting 
mortality, and others that incorporate the hypoth­

esis o f com pletely com pensatory hunting m or­
tality. These m odels are used to gauge the conse­
quences of different regulations. At present four 
m odels are used, each developed from  data bases 
that have accrued as a result o f waterfow l m oni­
toring and research programs.

4) M easures o f reliability for the m odels used in 
selecting harvest regulations. Reliability m eas­
ures are used to weight the model outputs and are 
updated each year as additional data about resource 
status and the impacts o f regulation become avail­
able. The notion o f reliability is included in the 
process as an acknowledgment that the &lsquo;correct&rsquo; or 
best approximating model for use in evaluating reg­
ulatory options is not known with certainty, and 
this uncertainty should be incorporated somehow 
in the procedure for evaluating and selecting reg­
ulations.

Adaptive harvest m anagem ent is framed in term s of 
sequential decision making under uncertainty, in which 
one annually observes the state of the resource system 
(e.g. population size and relevant environm ental fea­
tures) and takes some m anagem ent action (e.g. hunt­
ing regulations). An im m ediate return accrues as a 
result, which is expressed as a function of the benefits 
and costs that are relevant to the stated objectives of 
management. In response to the combined influence o f 
m anagem ent actions and uncontrolled environm ental 
variation, the resource system subsequently evolves to 
a new  state. The m anager then observes the new sys­
tem state, makes a new decision, accumulates additional 
returns, and the system evolves to yet another state (Fig. 
I). And so on. The goal o f managem ent is to make a 
sequence of such decisions, each based on information 
about current system status, so as to m axim ize m an­
agem ent returns over an extended time frame.

A m ajor advantage of AHM  is the explicit acknowl­
edgem ent o f alternative hypotheses describing the 
effects o f regulations and other environm ental factors 
on population dynamics. These hypotheses are codified 
in a set o f system models, each of which has an asso­
ciated weight reflecting its ability to describe system 
dynamics. Each year the weights are updated by com ­
paring the m odel-specific prediction of changes in 
population size against the actual change observed 
from the m onitoring program. By iteratively updating 
model weights and optim izing regulatory choices, the 
process eventually should identify w hich m odel is 
most appropriate to describe the dynamics of the m an­
aged population, and thereby should allow more effec­
tive, because better informed, management.
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Figure 1. A sequential decision-making process in which management decisions (i.e. hunt­
ing regulations) made over time (t) produce an immediate return, expressed as a function of 
the benefits and costs that are relevant to the stated objectives of management. In response 
to the combined influence of management actions and uncontrolled environmental variation, 
the resource system subsequently evolves to a new state. The manager then observes the new 
system state, makes a new decision, accumulates additional returns and the system evolves 
to yet another state.

Population dynamics and the value of 
harvest

In w hat follow s we describe AHM  in a context of 
optim al adaptive control theory. Structural uncertain­
ty is characterized here with multiple models o f pop­
ulation dynam ics over a discrete time frame, along 
w ith m odel-specific m easures o f uncertainty about 
which model is most appropriate. Without loss o f gen­
erality as to optim al m anagement, we com bine envi­
ronmental variation and partial controllability into a sin­
gle stochastic factor zt affecting population dynamics. 
R esource status is characterized by xt, recognizing 
that xt, includes attributes that are definitive of resource 
state. M anagem ent action at tim e t is designated by at, 
and policies describing actions over the rem ainder o f 
the tim e fram e are designated by A t.

W ith these notational conventions, consider a bio­
logical population that annually is subjected to har­
vest, with management actions that are based on resource 
status x t and the projected effects on future resource 
states. M odels depicting population responses play 
prominently in the assessment of impacts. Several mod­
els o f the form

are assum ed to be available, where at, and zt represent 
m anagem ent controls and random  variation, respec­

tively. Initially one does know which 
model m ost appropriately represents 
population change in response to man­
agement. This uncertainty is captured 
in a set pi(t) of likelihoods that express 
one’s confidence in the models at time 
t. The notation pi(t) allows for evolv­
ing likelihood values in response to 
accumulating information about man­
agem ent controls and population re­
sponses. By affecting population dy­
nam ics, m anagem ent can influence 
the evolution o f the likelihoods, and 
thereby promote learning.

Benefits and costs attend the imple­
m entation of harvest controls over 
time, and these can be captured in a 
utility function that itself may be mod­
el-specific. For simplicity we describe 
utilities as functions of the current 
resource state and action, recognizing 
that the utility function m ight also 

represent an average of utilities across potential outcome 
states. Thus, R i(at|xt) is the utility for model i if  the 
resource status is xt and action at, is taken. In the case 
of waterfowl harvest, the utility is given in terms of har­
vest yield, recognizing an aversion to harvest deci­
sions that would result in an expected population size 
below the goal o f the North American Waterfowl M an­
agement Plan (NAWMP; U.S. Department of the Inte­
rior, Environment Canada, and Secretario de Desarrollo 
Social M exico 1994). The capacity of available breed­
ing habitat to promote population growth is considered 
in determ ining an optim al regulatory decision for xt. 
Thus, liberal hunting regulations could be appropriate 
even if the population is below the NAW MP goal, if  
current habitat conditions are expected to result in 
good production of young. On the other hand, restric­
tive regulations may be appropriate when reproductive 
success is expected to be low, even if populations are 
at or above the NAW M P goal.

In general, an overall value for harvest utility that 
accounts for model uncertainty is the average

based on model-specific utilities Ri(at xt) and model like­
lihoods p i(t). If  there is only a single m odel under 
consideration, or if the likelihood is assum ed to be 
p i(t)= 1 for m odel i, the utility corresponding to action 
at simplifies to
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Each of the population models characterizes transitions 
of the population over time, as influenced by such fac­
tors as survivorship, recruitment and migration, along with 
the controls affecting them. These factors always are 
subject to environm ental variation and other stochas­
tic factors, including randomness in the effects of con­
trols. Thus, the projected resource status x t+1 for m od­
el i inherits a probability distribution Pi(x t+I|x t,at) from 
environm ental and other sources o f variation. The 
challenge is to choose harvest controls that will m ax­
imize aggregate harvest utility in the face of stochas­
tic effects, w hile also accounting for uncertainties 
about the biological processes that drive population dy­
namics.

Dynamic programming

A daptive harvest managem ent (AHM ) utilizes a vari­
ant of stochastic dynamic programming, an iterative pro­
cedure for identifying optimal state-specific actions for 
dynamic systems. Stochastic dynamic programming can 
be described in term s o f an observable system

where the expectation is with respect to environm en­
tal variation and partial controllability over the time 
frame. The notation V(At|xt) indicates that the accu­
mulation of utilities begins at time t, the start o f the time 
frame for A t. It also expresses the fact that accumulated 
utilities are conditional on the population state xt, in that 
V(At|xt) can (and usually does) vary for different pop­
ulation states xt.

Decom posing the sum above into current and future 
utilities, we have

with the transition probabilities p(xt+1|x ta t) capturing 
environm ental variation and partial controllability. 
These probabilities often are assumed to be stationary, 
in that they change through time only as a result of con­
trols. However, stationarity is not a theoretical require­
ment, and non-stationary transition probabilities can be 
denoted in the above expression simply by condition­
ing explicitly on time, as in p(xt+l|x t,at,t).

Values for the aggregate utilities V(At|xt) can be ob­
tained for every possible policy A, over the time frame. 
Thus, by proper choice o f A t these values can be opti­
mized. A backward iteration algorithm to determine an 
optimal policy is given by the Hamilton-Jacobi-Bellman 
(HJB) equation

(Stengel 1994), with V*(xt) the optimal value of aggre­
gate utility corresponding to state xt at tim e t.

The iterative application of the HJB equation start­
ing at the end of the time fram e is known as stochas­
tic dynam ic program m ing (Bellman & Dreyfus 1962, 
Dreyfus & Law 1977). The optim al policy A*(xt) thus 
described identifies optim al actions for all population 
states at all tim es in the tim e frame, along with a field 
o f optim al values V*(xt) for all population states and 
times. An optim al policy having been found with dy­
namic program m ing one need only identify the popu­
lation state xt at a particular time, and then apply the con­
trol specified by the policy for that state at that time.

Optimization in adaptive harvest 
management

Now consider the control of a population for which sev­
eral models describing population dynam ics are avail­
able, but the m ost appropriate model is not known 
with certainty, i.e. Pi(t)???l. Policy value is given in 
terms of accum ulated harvest utilities, averaged over 
all models based on the model likelihoods:

with at and zt representing managem ent controls and 
random  variation, respectively, at time t. Let policy A, 
specify a state-specific control aτ for every state xτ at 
every time in a time frame {t,t+l,...,T}. A value V(At|xt) 
can be associated with A t, by accum ulating utilities 
over the rem ainder o f the time frame:
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This expression can be further decom posed into cur­
rent and future utilities by

The term pi(t)pi(xt+1|xt,at) in the latter expression can be 
replaced by Pi(t+1) ??? (xt+1|x t,a t) via B ayes’ theorem

(Lee 1992), so that

A value V(At|xt,p t) for the average accum ulated utili­
ty can be obtained for every possible policy A t over the 
time frame, starting at any particular time t and any com­
bination (xt,Pt). By proper choice of A t these values can 
be optim ized, with a solution algorithm that is based 
on

This is a stochastic dynam ic program m ing problem, 
though com plicated somewhat by the characterization 
of system state by (xt,pt). Transitions via B ayes’ theo­
rem  are required for p t, and transitions for xt are giv­
en in term s of the transition probabilities ???(xt+1|xt,at).

The optimization problem can be solved by iterative 
application of Equation 1, starting at the end of the time 
fram e and proceeding backward in time. An optimal 
solution consists o f a policy A*(xt,pt) that identifies a 
specific action for every combination (xt,pt) of resource 
state xt and likelihood state pt, along with a field of opti­
mal values ???*(xt,p t) for all resource states and model 
likelihoods at all times in the time frame. To implement 
the optimal policy, at each time one must (i) determine 
the resource status, (ii) update the likelihoods with 
B ayes’ theorem, and (iii) apply the regulatory control 
specified by the optim al policy for the resource state 
and set of updated likelihoods (Table 1).

We note that when pi (t)= 1 the optimal policy and val­
ues for (xt.p t) are A i*(xt) and ???i*(xt) respectively for a 
single model i. This intuitive result follows from the fact 
that if P i( t ) = l ,  ???(x t+ 1|x t ,a t) = P i(x t+ 1|x t ,a t) throughout the 
rem ainder o f the time frame, so the com puting algo­
rithm  (1) reduces to the HJB equation for model i:

This form ula describes a straightforward stochastic 
dynam ic program m ing problem , which can be solved 
by iterative application o f Equation 2 as described 
above.

Optimal decision-making with partial 
observability

In alm ost all m anagem ent applications, resource sta­
tus is not known with certainty, and instead must be esti­
m ated at each tim e with field  data. An estim ate ???t 
inherits a distribution from  data collected in the field, 
conditional on the field sampling design and the actu­
al population size xt. Let yt represent field data collected 
at time t, and Yt represent the accum ulation o f data up 
to t. Each year’s m onitoring effort adds to the accu­
mulation of data, by Yt+1={ Yt yt+1}. Assume that an esti­
mate ???t of resource status can be obtained as a function 
???t= ???t(yt|Yt-1) of the data accumulated up to time t. Since 
yt, is conditional on xt, the estimate ???t inherits conditional 
distributions f1(xt|???t) and f2 (???|xt) from yt, the tran­
sition f ro m  ? ? ? t  = ???t(yt|Yt-1) to ???t+1 = ???t+1(Yt+1|Yt) is given 
in term s of the m odel-specific probabilities

U nder these conditions a solution of the optim ization 
problem for model i is obtained by iterative application
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Table 1. Optimal regulatory choices for midcontinent mallards during the 1999 hunting season. This strategy is based on very restrictive 
(VR), restrictive (R), moderate (M) and liberal (L) regulatory alternatives, along with current model weights, based on a dual objective of 
maximizing long-term cumulative harvest and achieving a population goal of 8.7 million. An appropriate regulatory action is identified for 
each combination of population and habitat conditions, based on information from resource surveys. Table cells with no regulatory entries 
correspond to season closure.

of the HJB equation, expressed in terms of estim ated 
rather than actual system state:

(W illiams 1996a).
A  key feature in incorporating partial observability 

is the statistical association between xt and ???t, from 
which are derived the conditional distributions f1 (xt| ???t) 
and f 2(???|xt). These distributions derive from the sto­
chastic structure o f the statistic ???t = ???t(y t|Yt-1), which is 
param eterized by xt.  The distribution f 2(xt|xt) arises 
naturally from  ???t = ???t(yt|Yt-1), based on sampling vari­
ation in yt. On the other hand, the derivation of f1(xt|xt) 
can be quite difficult to derive and is a subject o f con­
siderable theoretical interest (see below).

The extension to adaptive optim ization with m ulti­
ple models is straightforward. Then the HJB equation 
4 becomes

To identify the transition probabilities ???(???t+1|???t,at) in 
Equation 5 one must determine the transition probability 
???(xt+1|xt,at) for every state xt for which there is a non­
zero probability f1(xt|???t), and calculate the average util­
ity ???(at|xt,p t) for all states with non-zero probabilities.

These requirem ents result in a substantial increase in 
computations, well beyond what is required for a solu­
tion with a single model.

Sequential identification of resource state

In the development above we assumed an estimator ???t = 
???t(???t|Yt-1) and described the system transitions in terms 
o f ???t. In w hat follow s we generalize this situation 
somewhat by describing system transitions directly in 
term s of the accum ulated observations. Thus, at each 
time in the tim e fram e the system is observed, a m an­
agement action a, then is taken and the system evolves 
to a new state xt+1 at tim e t+1. The system is assumed 
to be only partially observable, so that xt cannot be 
observed directly, and information about the system state 
must be obtained from y t. System dynamics are record­
ed in terms o f the transition of observations from y t to 
yt+1, rather than transitions from  xt to xt+1. Transition 
probabilities, expressing the stochastic influence of 
environm ental uncertainty, partial controllability and 
partial observability, can be represented in terms of

W
here ???* (???t,p t)a n d  ???* (???t+1,p t+1) are defined as before 

and where Yt = { Yt-1,yt}accumulates observations up to time 
t. Here we u se  f1 an d  f2 to denote distributions based 
on observation data yt, in contrast to Equation 3 in which 
they represent distributions for the estimators ???t. We also 
characterize the transition probabilities by fß(xt|xt- 1 ,at-1) 
with structural uncertainty now represented by the 
param eter ß .

O f the three probability distributions in Equation 6, 
the distribution
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captures the notion of a sequential linkage o f systems 
states, whereby the transition from xt-1 to xt is influenced 
by m anagem ent control at-1 and is param eterized by ß 
(recall that the subscript i was used earlier to denote a 
lim ited suite of models). This distribution is based on 
stochastic models of population dynamics which them­
selves express hypothesized relationships among sys­
tem, environm ental and control variables. This for­
mulation allows structural uncertainty to be expressed 
in terms of variation in the param eter ß .

The com ponent f 2(y t|x t) of  Equation 6 essentially 
specifies that system state informs system observa­
tions, in that variation in the observations y t is condi­
tional on state xt. The idea is that observations are tied 
to the system state, with stochastic variation in yt as a 
result o f random sampling. This variation can be m od­
elled with field data, based on an assum ed form for f2yt|xt

The lead distribution in Equation 6

reflects the fact that the actual system state xt-1 is con­
ditionally associated with accum ulated observations 
Yt-1. Identifying distribution (8) can be especially prob­
lematic, in large part because the conditioning vari­
able Yt-1 is itself subject to stochastic and time-varying 
influences (i.e. sampling variability) that are not p res­
ent in xt-1. The stochastic identification o f xt-1 is an ex­
ample of statistical 'calibration' (Graybill 1976), where­
by the value of a conditional predictor variable is sought 
given one or more values of a stochastic response vari­
able. The difficulty here is that the predictor variable itself 
evolves stochastically according to the process equation

where et can be thought o f as a general environm en­
tal white noise process with an assumed mean of 0 and 
dispersion W t. Equation 9 provides the biological basis 
for distribution (6). To simplify notation, we suppress 
the subscript ß in the argument below, recognizing, how­
ever, the potential for structural uncertainty.

In w hat follows, we focus on the stochastic predic­
tion o f xt based on the accum ulated data Yt up to time 
t, and in particular we seek the distribution f2(xt|Yt), as 
rep resen ted  by estim ates o f  the conditional m ean 
E(xt|Yt) and conditional dispersion Σ x t|y t begin, 
consider initially a linear dynamic system, with xt a vec­
tor o f tim e-specific state variables (in our case popu­

lation and/or habitat status) and yt, a vector of tim e-spe­
cific observation variables (from e.g. breeding grounds 
surveys). The idea is to say something about the (actu­
al) state xt at each point in time, given a record o f  ob­
servations Yt up to t. State transition equations for a lin­
ear system can be expressed as

where Ft, is a full rank nxn matrix of potentially time- 
varying but non-random  parameters. A key structural 
assumption is that the environm ental vector et adds to 
the process com ponents Ftxt-1. Then the first and sec­
ond system mom ents are given by

and

N ote that the notation for system control has been 
suppressed; on including controls, see below.

The system is assum ed here to be partially observ­
able, with observation equations

where Ht is a kxn matrix of potentially time-varying but 
non-random parameters and r(Ht) = min {k ,n }. The vec­
tor ϵ t represents sampling variation, and is assumed to 
have 0 mean and dispersion Vt. Then

and

The linkage betw een system  state and observation 
state in Equation 13 is controlled by the m agnitude of 
dispersion Vt, and also by the rank of the transform Ht. 
A full rank transform  with 0 dispersion is tantam ount 
to com plete observability.

The problem of estim ating x t is non-trivial because 
the transition to xt each time is conditional on the pre­
vious state variable value xt-1 which itself is unob­
servable. An iterative procedure utilizes the condi­
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tional distribution of xt, given the current data y t and 
an unbiased estim ate ??? based on previous data. The 
procedure is based on the jo in t distribution

of xt and y t where E(xt) and Σxt are given as in Equations 
11 and 12, E(yt) and Σyt are given as in Equations 14 
and 15 and

Thus,

From this distribution it follows that, conditional on 
observations y t, the distribution of system state xt has 
the mean

(Graybill 1976: 106). Substituting ??? and ???, for the ex­
pected values in Equation 16 yields the iterative algo­
rithm

• Likewise, the conditional dispersion in expression (17) 
is a linear com bination of two components, the first 
o f w hich is the dispersion of xt based on the system 
transition Equation 10, absent environm ental and 
observability considerations for tim e t. The second 
com ponent adjusts this dispersion with a factor that 
accounts for the latter sources of variation.

• If  F t, H t, Vt, and W t are stationary the evolution of 
mom ents for (xt|y t) display the following patterns:

- Both the estim ate ??? and the dispersion tend to 
increase or decrease through time depending on the 
eigenvalues o f F .

- Both environmental dispersion W  and observabili­
ty dispersion V influence the evolution ??? through 
the second term in expression (18).

- Environmental variation and partial observability also 
influence the evolution o f the conditional dispersion, 
through the second term in expression (17).

• The following conditions contribute to a large adjust­
m ent in the mean o f (xt|y t) through time:
- y t - H tFtxt-1 is large;
- V t is small;
- H t is nxn and full rank.

• The following conditions contribute to the reduction 
in dispersion o f (xt|yt) through time:
- V t is small,
- H t is nxn and full rank.

With this formulation it is easy to see why adaptive deci- 
sion-making is so m uch easier in the presence of com ­
plete observability. If  V t, = 0 and Ht is dimension n and 
full rank, the estim ate xt in expression (14) becomes

In essence, com plete observability means that xt and 
y t encode the same inform ation, so that the system 
state xt at tim e t is known with certainty once the data 
y t are available. The adaptive m anagem ent job  then 
becomes one of controlling an observable process with 
temporally varying dispersion R t that is known at each 
point in time.

and the dispersion

for updating the estimate ??? at time t - 1 to ??? at t based 
on the data yt. A number o f interesting points are note­
worthy in Equations 16-18:

• The estim ate ??? in expression (18) is a linear com bi­
nation o f two com ponents, the first of which is sim ­
ply the propagation of ??? with the system transition 
matrix Ft, absent any updating with data. The second 
adjusts this propagation with a factor that accounts for 
the com ponents y t.

and the dispersion of (xt|yt) in expression (17) becomes
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Equation 18 is a version o f the Kalm an filter (Kal­
m an 1960, K alm an & Bucy 1961), with filter gain 
R tH '( H tR tH 't - Vt)-1 influencing both the conditional 
means and the conditional dispersions. On assumption 
of multivariate normality for vt and wt, it can be shown 
that the Kalman filter provides a minimum variance esti­
mator o f system state. N ote that data-based adjust­
ments occur in the estim ation of ??? but not in the tem ­
poral updating of dispersion, since the latter is influ­
enced by sampling variation only through the sampling 
dispersion Vt in the filter gain. A  readable description 
of the K alm an filter is given by M einhold & Singpur- 
walla (1983), though their approach differs from the de­
velopment here. A theoretically comprehensive descrip­
tion is given by Stengel (1994).

Incorporating harvest controls
One of the nice things about this formulation is that addi­
tional complexity can be accommodated without much 
effort. For example, additive controls can be included 
simply by incorporating an additional term at-1 in tran­
sition Equation 10:

Then Equation 11 for the mean E(xt) becomes

Equation 16 for the conditional mean becomes

and the updating algorithm in Equation 13 is

Note that because at is assum ed to be non-random, 
Equation 13 for the dispersion of (xt|yt) remains un­
changed. It follows that controls in a linear system 
can influence the system state (and thus the data-based 
estimate ??? o f system state), but not the corresponding 
dispersion. This is not surprising, since at essentially 
constitutes a linear random influence on the system 
mean. Equation 16 still describes a (relatively!) simple 
algorithm for calculating the dispersion trajectory, one 
that is especially easy to use if transfer matrices are con­
stant over time. Then the eigenstructure o f the gain will 
be diagnostic of change in dispersion, with patterns that

exhibit either explosive growth or exponential decay 
over the long term depending on the eigenvalues.

One can introduce partial controllability into the prob­
lem by assum ing that the control at is random,

where the distribution mean ??? represents an 'intended' 
control at each point in tim e and the dispersion repre­
sents uncontrolled variation about the mean (as with the 
other stochastic model components, we assume here that 
there is no autocorrelation). Then the system mean 
becomes

the system dispersion becomes

and the updating algorithm becomes

with

Note that stochastic controls, like deterministic controls, 
influence the system state through the mean value ???. 
However, unlike deterministic controls they also inflate 
system dispersion. A gain this is not surprising, since 
stochastic control simply adds another random  ele­
m ent to the system transitions.

Special cases
There are several interesting special cases that corre­
spond to restrictions on the sources of system variation. 
Exam ples include:

C onstant system state: On assum ption that xt = xt-1 
over the tim e frame, system ’dynam ics' really consist 
o f variation in the system observations through time:

This formulation is simply the general linear model o f 
classical estim ation theory, with x playing the role o f 
the vector ß to be estim ated and H t playing the role o f 
the predictor data matrix X . Estimation in this case pro­
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ceeds in a straightforward manner, according to the usu­
al com puting algorithm s for general linear m odels 
(Graybill 1976).

We note that a filter-like form can be used for recur­
sive updating of a least-squares estimator. To illustrate 
this, consider a univariate response y t at each point in 
time, with y 't = [y 't-1y t] and H 't = [H't-1, h 't] represent­
ing the accum ulation of data up to tim e t. If  ??? and 
??? are tim e-specific least-squares estimates, then

with

The dispersion o f ??? also can be expressed recursive­
ly as

or in term s o f the estim ator gain K t as

The recursive approach to least-squares estimation is 
described in W alters (1986).

Observation error only: In this case the system state 
varies through time according to Equation 10, except 
that process variation is assum ed to be captured in the 
transition matrix Ft. In effect, there are no stochastic 
com ponents in the state transitions, and the state tra­
jectory is completely determined by the initial state x0. 
The effect of this assumption is registered in a simplified 
dispersion for xt in Equation 12, which no longer con­
tains a term W t for the dispersion of et. All other com ­
puting form s are operative, and the overall effect is to 
increase system gain: basically, with less noise in the 
system there is m ore information in the accum ulated 
data about x0.

Process variation only: In this case the system con­
tains random 'process variation' et, but it is observed per­
fectly. Without loss o f generality, the observation Equa-

tion 13 is sim plified to yt = xt, with Ht = I and Vt = 0 . 
As mentioned above, the estimation issue then vanishes, 
and the problem  reduces to the optim al control o f an 
observable stochastic system.

Discussion

It is worth keeping in m ind that the theoretical devel­
opments o f the previous section are really about the 
(apparently) small problem of identifying f1(xt-1|Yt-1) in 
the decom position

o f transition  probabilities in the H am ilton-Jacobi- 
Bellman equation. By imposing rather stringent linearity 
conditions on the system transitions as in Equation 
10, it is possible to derive efficient algorithms for esti­
m ating or 'projecting' the system state xt at each point 
in the tim e frame. On the assum ption that stochastic- 
ities are norm ally distributed, the Kalman filter can be 
shown to produce an optim al estim ator xt.

It also is worth keeping in mind the limitations of the 
Kalm an filter, especially for biological systems with 
severe non-linearities and non-additive variance com ­
ponents. The linear system transitions in Equation 10 
can be generalized naturally as in Equation 9, to include 
m athem atical non-linearities as well as non-additivi- 
ty in the stochastic environmental influences. Either or 
both features require a different approach to the deriva­
tion of f1(xt-1|Yt-1). A  possible attack on non-linear sys­
tem dynam ics is by way of a neighbourhood analysis 
around a system equilibrium  utilizing a Taylor series 
expansion to produce a quasi-linearized approximation 
o f the system equations. This approach leads into the 
realm of the extended Kalman filters for non-linear sys­
tems, a mathematically complex issue that nevertheless 
is worth exploring in the context o f adaptive harvest man­
agement.

The focus of the developm ent presented here is on 
the identification o f resource state in the case of par­
tial observability. Together with other recent technical 
developments (Williams 1996a,b, Williams, Nichols & 
Conroy in press, B. Lubow, pers. comm.), the preced­
ing m aterial provides the fram ework needed to actu­
ally carry out adaptive optimization. Despite the recent 
advances on this particular topic, technical challenges 
nevertheless remain in the implementation of adaptive 
m anagem ent. Some of these challenges involve opti­
mization computations, others involve possible changes
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in the nature o f the objective function and still others 
involve m ore fundam ental issues associated with the 
developm ent of the a priori model set.

There are very substantial computational requirements 
with the approach presented here for projecting future 
resource state in the face of partial observability, and 
presented elsewhere (Williams 1996a,b, Williams et al. 
in press) for projecting future information state. Software 
development for this purpose is proceeding rapidly, how­
ever, and should permit application of this approach in 
the very near future (B. Lubow, pers. comm.). The 
stochastic dynam ic program m ing approach to com ­
puting optim al state-specific policies (Lubow 1994, 
1995) has been applied successfully to the adaptive har­
vest management o f midcontinent m allard ducks Anas 
platyrhynchos in N orth America (Williams & Johnson 
1995, W illiams, Johnson & W ilkens 1996, Johnson, 
Moore, Kendall, Dubovsky, Caithamer, Kelley & Wil­
liams 1997, Johnson & Williams 1999), a problem  in­
volving a single population and four com peting m od­
els o f system dynamics. Recent decisions to consider 
the use of adaptive managem ent for additional popu­
lations of m allards and perhaps other waterfowl spe­
cies could increase the dim ension of the optim ization 
problem , adding substantially to the com putational 
load. A lthough m ost o f our practical experience is 
based on the management of hunting regulations, recent 
attention has focused on habitat acquisition and m an­
agem ent (e.g. Johnson, W illiam s & Schm idt 1996, 
Johnson, Anderson, Baydack, Nelson, Ringelman, Ko- 
neff, Bailey, M artin & Rubec 1997). The simultaneous 
incorporation o f both habitat and harvest actions into an 
adaptive fram ework is certainly possible, but the exis­
tence of different temporal scales of the two classes of 
action (e.g. annual hunting regulations, planting of 
nesting cover at m ulti-year periods, one-time acquisi­
tion of nesting or wintering habitat) may complicate both 
the modeling and the optimization algorithms.

The objective function currently used in mallard man­
agement focuses on the size of the harvest. Because 
waterfowl hunting in the United States is not a com ­
mercial enterprise, it can be argued that the objective func­
tion should incorporate measures of hunter 'satisfaction' 
that include factors in addition to harvest (Ringelman 
1997, Johnson & Case 2000). Development of appro­
priate metrics for hunter satisfaction, monitoring pro­
grams for these metrics, and models relating satisfac­
tion to hunting regulations represent an important tech­
nical challenge (also see Johnson & Case 2000).

The optim al policies and learning identified via the 
outlined approach to adaptive management are condi­
tional on the members of the model set. This conditional

nature o f the process encourages substantial care and 
effort in the developm ent o f the com peting system 
models. If none o f the models closely approximates sys­
tem dynamics in response to management actions, then 
the inform ation state of the process will not evolve in 
the desired manner to decrease uncertainty. Because even 
models that are well-grounded em pirically m ay not 
perform well when conditions change, we recommend 
that biologists focus on mechanistic models to the de­
gree practicable (e.g. Johnson et al. 1993, Williams et al. 
in press). If the m odelled processes themselves change 
over time, then the information state can be expected to 
evolve in the direction o f the models best approximat­
ing reality. The success of the adaptive process in this 
situation should be a function of the relative rates of 
change in the underlying process versus the information 
state.

In addition to these technical challenges, the contin­
uation and expansion of adaptive m anagem ent o f 
waterfowl harvest will involve a number of institutional 
challenges. Perhaps the m ost im portant o f these chal­
lenges are political in nature. Adaptive harvest m an­
agement was implemented by the U.S. Fish and Wildlife 
Service in 1995 and habitat conditions have remained 
favourable for mallard production. The combination of 
reasonable mallard populations and good habitat con­
ditions has led to liberal hunting regulations during 
each of the years under adaptive management. Political 
pressure for changes in regulatory decisions tend to be 
much greater in years o f poor populations and/or habi­
tat conditions. It is hoped that harvest managers can with­
stand political pressures when these conditions occur, 
and continue to establish hunting regulations accord­
ing to the policies developed through the adaptive op­
tim ization process.

We believe that political input to the adaptive m an­
agem ent process should largely focus on the develop­
ment of objective functions and the identification of reg­
ulatory alternatives. Political influence is to be expect­
ed with these two com ponents of the adaptive m an­
agem ent process, but politically m otivated changes 
should be restricted to periods o f program reassessment 
and should not occur frequently. Frequent changes in 
the regulatory packages, for example, lim it one’s abil­
ity to predict harvest rates from regulations, and there­
by retard the reduction of a principal source o f uncer­
tainty (partial controllability).

Another institutional challenge involves the techni­
cal and relatively m athem atical nature of this formal 
approach to adaptive management. Work on this top­
ic requires a level of technical expertise that is not 
com m on among wildlife managers. The group of sci­
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entists and m anagers responsible for the initial efforts 
with m allards is relatively small, and it is essential to 
maintain this group and to train other technicians in this 
methodology.

Despite these and other challenges (e.g. Johnson & 
Case 2000), we believe that adaptive processes o f the 
type described in this paper will becom e increasingly 
im portant in North Am erican waterfowl harvest m an­
agement. The political and scientific selective pressures 
that resulted in the consideration and adoption of this 
process in 1995 are even stronger and more com pel­
ling today (Nichols 2000). We thus believe that the 
approach merits the additional research to deal with the 
rem aining technical challenges and to expand the 
approach to other populations and species.
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