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A review of wildlife abundance estimation models:  
comparison of models for correct application

Hayato Iijima*
Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan

Abstract.  In this review, the various models to estimate wildlife abundance are organized for pro­
moting the correct application of them in animal ecology. If individuals of the target wildlife are distin­
guishable, the capture-recapture (CR) model and the spatially explicit capture-recapture (SECR) model 
can be applied to the closed population and the Jolly-Seber (JS) model can be applied to the open 
population. If not, the distance sampling, N-mixture model, random encounter (RE) model, random 
encounter and staying time (REST) model, and removal sampling can be applied to the closed pop­
ulation, and the harvest-based model can be applied to the open population. Recent advances in the 
hierarchical model and the integrated population model (IPM) make it possible to model the abundance 
and demographic rate of the wildlife by considering the ecological process of the target wildlife and 
observation process of them and to utilize the various but fragmented data. Then, the formalization of 
the abundance estimation model as a hierarchical model and the construction of the IPM by considering 
the available data and biological characteristics of the target species are useful for future research.

Key words:	detection probability, hierarchical model, integrated population model, population closure, 
robust design.

The abundance of wildlife is one of the key components 
in animal ecology. However, because humans cannot 
perfectly control and observe wildlife, the estimation of 
wildlife abundance is a hot topic in animal ecology. How 
can we estimate the abundance of wildlife? A direct count 
of wildlife is the most primitive way to estimate wildlife 
abundance. The block count (e.g., Jachmann 2002), in 
which researchers count the wildlife that they see within 
a fixed area, and the aerial survey (e.g., Pettorelli et al. 
2007), in which researchers on an airplane count wildlife, 
are typical methods of the direct count. However, it is 
easy to expect that the data of direct count contains large 
variations. Do individuals of target species exist in the 
survey area? Can researchers detect individuals that cer­
tainly exist in the survey area at the survey timing? The 
former issue is related with the population closure (or 
availability), and the latter issue is related with the 
detection probability. Furthermore, if the survey period is 
long, the change of abundance by birth, mortality, and 

migration of the target species should also be considered. 
Tremendously various models for wildlife abundance 
estimation have been developed, and the new models are 
being created. These models differ in the assumption 
and required data.

The objective of this review is to organize the various 
models in estimating wildlife abundance and to promote 
the correct application of these models in animal ecology. 
First of all, I categorized the models on whether they treat 
marked or unmarked wildlife. After that, I categorized 
the models in relation to the population closure, the main 
target of estimation (abundance or density), and the 
monitoring methods.

Abundance estimation for marked wildlife

Capture-recapture (CR) model for the closed population
First, I treat the estimation way of abundance in the 

closed population by the CR survey because the CR 
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model for the closed population is considered to be the 
most basic of all abundance estimation models. “Closed” 
means that individuals in the population do not increase 
or decrease by birth and death, and there is no migration 
during the study period. If individuals in the population 
can be identified and detected more than once during 
several sampling occasions, their abundance can be 
estimated as below (Williams et al. 2002):

	 (1)

 is the estimator of abundance, C is the number of 
counted wildlife, and  is the estimator of the detection 
probability. Although the name of the method is “capture-
recapture”, researchers do not need to capture wildlife 
physically if they can distinguish individuals from any 
patterns or characteristics of their body. Then, the CR 
method is also known as the “mark-resight” (McClintock 
et al. 2009) and “mark-recapture” (Greenwood et al. 
1985). At the same time, “detection” is also the same 
meaning as “capture.”

Let’s imagine the case of two sampling occasions in 
estimating  and  under the constant detection proba­
bility. n1 is the number of animals caught and marked 
on the first occasion, n2 is the number of animals caught 
on the second occasion, m2 is the number of animals 
caught on both occasions, and N is the true population 
size. If all animals have equal capture probabilities, the 
proportion of marked animals in a population after the 
first sample should approximate the proportion of marked 
animals in the second sample, i.e.,

	 (2)

Rearrangement of terms in equation (2) leads to the 
estimator of N ( ) as below, and  is known as the 
Lincoln-Petersen estimator (Petersen 1896; Lincoln 1930):

	 (3)

In this case,  is derived as m2/n2.
It is useful to generalize the procedure to obtain the 

estimators by using probability distribution. The multi­
nomial distribution is as appropriate as the model in esti­
mating abundance and detection probability. In the case 
of the above example (i.e., two sampling occasions with a 
constant detection probability), the probability for the 
data can be expressed below:

	 (4)

The above probability can be extended to K times the 
sampling occasions as below:

	 (5)

	 (6)

xw is the number of caught wildlife in each capture history 
(w) and MK+1 is the total number of marked individuals 
caught during the study. Specifically, in the case of three 
sampling occasions, w = {(0,0,1), (0,1,0), (0,0,1), …, 
(1,1,1)}, where the “0” and “1” indicate non-capture and 
capture in each sampling occasion, respectively.

Recently, the formalization of the CR model for the 
closed population as a hierarchical model was conducted 
by Royle et al. (2007). The hierarchical model along with 
the ecological model describes the ecological and latent 
process of the targeted wildlife, and the observation 
model describes the process to observe the latent state of 
the targeted wildlife (Royle and Dorazio 2008). In the 
hierarchical CR model for the closed population, the true 
but latent state about the presence/absence of each indi­
vidual is estimated. Then, the detection/non-detection of 
each individual in the population is treated in the hierar­
chical CR model for the closed population. Implementa­
tion of the hierarchical CR model for the closed popula­
tion is accomplished by the “parameter-expanded data 
augmentation (PX-DA)” technique (Royle et al. 2007). 
PX-DA consisted of two things by Royle et al. (2007): (1) 
adding an arbitrary number of zeros to the data set and (2) 
analyzing a reparametrized version of the original model. 
Let’s assume that n is the number of marked individuals, 
N is the latent population abundance, and M is the aug­
mented data size. The relationship among them is n < N < 
M and N = yM: y is the inclusion probability. Then, the 
number of zeros that are added to the original data should 
be larger than N. The zeros can be divided into two com­
ponents, i.e., “real” but unmarked individuals and indi­
viduals that do not exist in practice. The sum of n and the 
“real” but unmarked individuals is N. Hierarchical CR 
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model for closed population by using data augmentation 
is expressed below:

	 (7)

	 (8)

	 (9)

	 (10)

	 (11)

y is the inclusion probability as stated above, p is the 
detection probability, zi is the latent state of ith individual 
whether ith individual truly exists in the target population 
(“1”) or not (“0”), and yi,k is the augmented data of 
detection (1) or the non-detection (0) of the ith individ­
ual in the kth sampling occasion.

The detection probability can differ during the survey 
if you obtain the appropriate covariate(s) of the detection 
probability. Otis et al. (1978) organized various models 
for detection probability. M0 is the model with the con­
stant detection probability (as above example), Mt is the 
model with the time-dependent detection probability, Mb 
is the model with the behavior-dependent detection prob­
ability, and Mh is the model with the individual-dependent 
detection probability. Mt is suitable when the detection 
probability changes with time. For example, if the detec­
tion probability increases in winter because of the food 
shortage, Mt should be used. Mb is suitable when the 
detection probability changes by the behavioral response 
to trapping. For example, if the detection probability 
differs before and after the first capture of wildlife, Mb 
should be used. The change of the detection probability 
by trapping is a well-known phenomenon that is known 
as “trap happy” and “trap shy” (Tuyttens et al. 1999; 
Zwolak and Foresman 2008; Augustine et al. 2014). If 
there is a behavioral response to trapping, the duration 
time of the behavioral response should be considered.

Because of too many parameters of Mh, the parameters 
of individual effect cannot be identifiable unless each of 
the parameters is regarded as a random effect that follows 
any probability distributions (Otis et al. 1978). Then, 
Huggins (1989) and Alho (1990) reorganized the models 
as fully-observable covariate model (Mt, Mb) and individ­
ual covariate models. Although the difference between 
fully-observable covariate models and individual covari­

ate model seems difficult to understand, the former treats 
the effect of factor (i.e., time or the catch history) as a 
fixed effect and the latter treats the effect of individual 
heterogeneity as a random effect. As stated above, we 
cannot essentially observe “individual heterogeneity”. 
Then, it is reasonable to consider the effect of individual 
heterogeneity as a random variable. Because all individu­
als including unobserved individuals are treated in the 
hierarchical CR model as we see in equations (7) to (11), 
the effect of individual heterogeneity on detection proba­
bility can be easily treated in the hierarchical CR model.

Spatially explicit capture-recapture (SECR) model
CR models basically cannot estimate the density of 

wildlife because the effective sampling area for estima­
tion cannot be defined in the model. To estimate the den­
sity of wildlife, the location of individuals in an arbitrary 
space should be defined. Although there are many studies 
about SECR models (Hartstack et al. 1971; Efford 2004; 
Borchers and Efford 2008), I introduce the idea of Royle 
and Young (2008). The treatment of the activity center of 
each individual enables the estimation of the effective 
sampling area. Royle and Young (2008) modeled the 
detection probability as the relationship between the 
activity center of each individual and the location of 
observation.

Here I explain the SECR model to estimate the wildlife 
abundance and their activity centers for the closed popu­
lation from the camera-trapping survey data. J camera 
traps are set in a square space and the photographed wild­
life can be identified. The locations of the J camera traps 
with coordinates are cj = (c1j, c2j); j = 1, 2, ..., J. n individ­
uals are totally identified, and the number of photos of the 
ith individual of the jth camera in the kth sampling occa­
sions (yi, j,k) is recorded. However, some individuals may 
not be detected during the study period. In order to esti­
mate true abundance N in an arbitrary space region, data 
augmentation is useful in estimating N as explained in the 
CR model for the closed population. An arbitrary large 
number of individuals with all zero records are added to 
the data, and N is modeled as equations (7), (8), and (9).

Next, I introduce another square space S that encloses 
the region where J camera traps are set. The activity 
center of each N individual in S such as si = (s1i, s2i); i = 1, 
2, ..., N, is modeled as below:

	 (12)

In this case, N is the estimate of abundance, the area of 
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S is the effective sampling area, and N/S is the estimate 
of density.

With the location of activity centers of all individuals, 
the detection probability is modeled as the distance 
between the activity center of each individual (i.e., si) and 
the location of observation (i.e., cj). Although many func­
tions can be used, the half-normal function is a popular 
function. By using the half-normal function, the detection 
probability can be modeled as below:

	 (13)

pi,j is the detection probability of the ith individual by the 
jth observation point,  is the squared distance between 
the ith individual’s activity center and the jth observation 
point (i.e., (si – cj)2), and s2 is the scale parameter of the 
half-normal function. Therefore, the number of photos 
of each individual in each sampling occasion can be 
expressed as below:

	 (14)

l0 is the baseline detection intensity.
Here we assume that the population is closed. How­

ever, the SECR model can be extended to the open popu­
lation (Gardner et al. 2010). Furthermore, Chandler and 
Royle (2013) extended the SECR to be able to be applied 
to the population without the individual identification or 
partially identified population (unmark SECR).

Capture-recapture models for open population
The estimation of the population abundance by the CR 

model for the closed population is robust because the 
relationship between the true abundance and observed 
counts is obviously expressed by the model. However, the 
assumption of the population closure is sometimes diffi­
cult to accomplish in ecological studies. Furthermore, the 
temporal change of abundance itself can be the interest of 
research. Therefore, the CR model for the closed popula­
tion has been extended to the open population. “Open” 
means that the individuals in the population can increase 
or decrease by their natural mortality, birth, and migra­
tions during the study period. To estimate the abundance 
of open population, the survival and entering of individu­
als for the target population, in addition to the detection of 
wildlife, should be treated.

The Jolly-Seber (JS) model (Jolly 1965; Seber 1965) 
estimates the entry probability in addition to the survival 

and detection probability. Although there are some varia­
tions of the JS model, I explain the super-population 
approach (Williams et al. 2002) here. For simplicity, I 
explain the JS model of super-population approach as the 
hierarchical model. In the super-population approach, we 
assume that the individuals enter the target population 
from a “super-population” by each sampling occasion. 
The entry probability of the individuals from the super-
population is defined as below:

	 (15)

	 (16)

bk is the entry probability of the kth survey, a = (a1, a2, …, 
ak) is the parameter of Dirichlet distribution, and hk is the 
conditional entry probability of the kth survey. Usually, 
each component of a is set as 1 (a non-informative prior 
distribution).

By using the entry probability in addition to the sur­
vival probability, we can model the survival and entry of 
each individual in each sampling occasion below. In 
this case, we assume the constant survival probability:

	 (17)

	 (18)

	 (19)

j is the survival probability and zi,k is the latent variable of 
the presence or absence of the ith individual in the kth 
sampling occasion in the target population. Equation (19) 
indicates the presence or absence of the ith individual in 
the k+1th sampling occasion (zi,k+1) is determined by the 
survival of the ith individual (j) that existed in the target 
population in the previous sampling occasion (zi,k) and 
the products of absence probability until the kth sam­
pling occasion ( ) and the entry probability in 
the k+1th sampling occasion (hk+1).

Next, I explain the observation model. Since the detec­
tion of the individual is generally imperfect in the field 
survey, the detection probability should be estimated. In 
this case, I assume that there are no covariates among the 
detection probability as below:

	 (20)
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Because the detection is imperfect, the unmarked but 
existing individuals in the target population should be 
considered to estimate the population abundance. As 
explained in the closed population, the data augmentation 
technique is again useful. The estimation of the latent 
state of M individuals can be modeled as below:

	 (21)

	 (22)

y is the inclusion probability as stated above, and wi is 
the latent variable among the presence (1) or absence (0) 
of the ith individual in the target population during the 
whole survey.

By using the above parameters, the observed data 
including the added zeros can be modeled as below.

	 (23)

yi,k is the detection (1) or non-detection (0) of the ith indi­
vidual in the kth sampling occasion. Furthermore, abun­
dance of the kth sampling occasion (Nk = (N1, N2, ..., NK)) 
and total abundance of the targeted population (N) can 
be derived as below:

	 (24)

	 (25)

	 (26)

	 (27)

Nindi is the number how many times the ith individual is 
detected, and Nalivei denotes its state (alive or dead, or 
included or not-included). These two derived parameters 
are necessary to calculate N.

It is possible that the survival and detection probabili­
ties fluctuate with covariates like time, individual, and 
capture history, as is case of the detection probability of 
the CR model for the closed population. However, in this 
case, there are two parameters. It is necessary to measure 
covariates in each sampling occasion and to model the 
survival or detection probability with the measured covar­
iates. However, if there are correlations among the factors 
of fluctuation of survival or detection probability, param­

eter identifiability may be lost. Therefore, I recommend 
researchers to adopt the “robust design” (Pollock et al. 
2002). The central philosophy of the robust design is to 
conduct multiple surveys (i.e., replication) under a con­
stant condition. Under the robust design, the sampling 
occasions are divided into two hierarchies. As an example 
of the robust design, let’s assume the situation in which 
you would like to estimate the effects of the climate on the 
survival and detection probabilities in the count survey of 
some wildlife species. In the first hierarchy, factors like 
climate can change in-between the sampling occasions. 
In the second hierarchy, more than two samplings should 
be conducted within a short period when the factors can 
be regarded as stable. Because it is reasonable to assume 
that there is no mortality among samplings within a sec­
ond hierarchy, the variation of the number of counts in 
the second hierarchy reflects the detection probability. 
Therefore, the usage of the robust design is important in 
guaranteeing the identifiability of parameters in a model.

Abundance estimation for unmarked wildlife

Background
All models that are explained above coerce the 

researchers to identify individuals in the population. 
However, the identification of wildlife is sometimes 
impossible or practically difficult. The difficulty to iden­
tify wildlife has motivated the development of population 
abundance estimation way without identification of the 
wildlife. From here, I review such estimation models.

Distance sampling
Distance sampling is to count the number of individu­

als from fixed points or fixed transects. There are many 
ways to conduct distance sampling, but here I introduce 
the distance sampling by using the line transect sampling 
and the abundance estimation method by following 
Buckland et al. (2001). The basic model for the estima­
tion of the wildlife density by distance sampling is 
expressed below:

	 (28)

 is the estimator of wildlife density, n is the total num­
ber of counted wildlife from a line of L length within  
w distance from the line, and  is the probability of 
detection for an object within an area a.  can be 
expressed as below:
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	 (29)

g(x) is detection function in relation to x length which  
is the distance between the line and the object. For 
simplicity,  is sometimes expressed as m and 
equation (28) becomes as below:

	 (30)

 is the estimator of an effective strip half-width (ESW) 
that is the distance from the line for which as many objects 
are detected beyond m as are missed within m of the line. 
Various probability functions are available for g(x), and 
the selection of probability function can be done by the 
likelihood ratio test or AIC.

The assumptions of distance sampling by the line tran­
sect sampling are categorized into experimental design 
and observation. The assumptions of the experimental 
design are that 1) objects are spatially distributed in the 
area to be sampled according to some stochastic process 
with rate parameter D (i.e., number per unit area) and  
2) randomly placed lines or points are surveyed, and a 
sample of n objects are detected, measured, and recorded. 
The assumptions of observation are that 1) objects directly 
on the line or point are always detected (i.e., they are 
detected with probability 1); 2) objects are detected at 
their initial location, prior to any movement in response 
to the observer; and 3) distance (and angles where rele­
vant) are measured accurately (ungrouped data) or objects 
are correctly counted in the proper distance interval 
(grouped data).

Recently, the formulation of the distance sampling 
model as a hierarchical model (hierarchical distance 
sampling model) was accomplished by Kéry and Royle 
(2015). Although the details of the hierarchical distance 
sampling model are not introduced here, the hierarchical 
distance sampling model is especially useful in modeling 
the effects of the individual covariates and the spatial 
heterogeneity of abundance.

N-mixture model
The N-mixture model was proposed by Royle (2004) 

to estimate the local and latent abundance of wildlife and 
detection probability of the latent abundance by repeated 
counting in space and time. The N-mixture model is 
expressed below:

	 (31)

	 (32)

l is the mean abundance of the target population, Ni is 
the local abundance in the ith location, p is the detection 
probability, and yi,k is the observed abundance in the ith 
location and the kth sampling occasion.

To apply the N-mixture model, researchers need to 
conduct repeated observations in space and time under 
closed conditions. The assumptions of the N-mixture 
model are as follows:
1)	In each sampling occasion, the duplicated count of the 

same individual must be avoided.
2)	The detection probability should be constant during 

the survey.
3)	The local abundance (Ni) should follow the used 

probability distribution (in equation (31), Poisson 
distribution).

Link et al. (2018) examined the biases of the N-mixture 
model under the three violations of model assumptions 
and recommended to collect reliable data about detection 
probability by CR methods because the violation of con­
stant detection probability especially caused the biased 
estimates. 

While, some family models of N-mixture model can 
estimate the abundance even if the duplicated count of 
the same individual occurs in a single sampling occa­
sion. Nakashima (2020) showed that the Royle-Nichols 
model and Poisson/Poisson N-mixture model provided 
reasonable estimates of the number of animals in such 
situation. The Royle-Nichols model (Royle and Nichols 
2003) treats the duplicated counts by reducing the infor­
mation of data from abundance to presence/absence. The 
formulation of the Royle-Nichols model is as below:

	 (33)

	 (34)

In this case, yi,k is the presence/absence of target wild­
life in the ith location and the kth sampling occasion. 
However, it should be noted that the Royle-Nichols 
model can estimate realistic abundance only when abun­
dance and detection are low (Kéry and Royle 2015). The 
Poisson/Poisson N-mixture model (Kéry and Royle 2015) 
treats the duplicated counts by using Poisson distribution 
as the alternative of binomial distribution of the observa­
tion model. The formulation of the Poisson/Poisson 
N-mixture model is as below:

	 (35)
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	 (36)

In this case, yi,k is the counts of target wildlife in the ith 
location and the kth sampling occasion and ik is a rate 
parameter in the ith location and the kth sampling occa­
sion.

Random encounter (RE) model
Rowcliffe et al. (2008) applied the model about rates of 

the collision between gas molecules into density estima­
tion of wildlife by using camera-trapping data and named 
as the RE model. The RE model for wildlife density esti­
mation is expressed as below:

	 (37)

D is the density of wildlife, y is the observed counts of 
wildlife, t is the time of sampling, p is the ratio of the 
circumference of a circle to its diameter, v is the animal 
speed of movement, r is the radius of detection, and q is 
the detective angle from the observer.

Assumptions of the RE model are as follows: (i) ani­
mals conform adequately to the model used to describe 
the detection process; (ii) photographs represent inde­
pendent contacts between animal and camera; and (iii) 
the population is closed. Furthermore, as stated above, 
researchers need to clarify the movement speed of the 
target wildlife. The movement speed of target wildlife 
can be obtained by radio-tracking of target wildlife, but 
it is time-consuming to attach many radio-collars or 
GPS-collars to wildlife.

Random encounter and staying time (REST) model
Nakashima et al. (2018) extended the RE model as 

researchers can estimate wildlife density by only the data 
from camera trap. They changed the RE model as below:

	 (38)

D is the population density of target animal, E(Y) is the 
expected number of encounters, E(T) is the expected 
staying time, s is the area of the detection zone, and H is 
a research period. The important point is to use video 
mode instead of camera mode to evaluate the animal 
speed of movement. For evaluation of the animal speed, 
researchers should set signs in front of the camera trap to 
clarify when an animal will enter and how long the ani­
mal will stay in the detective zone in front of the camera.

There are seven assumptions to apply the REST 

model. (1) Camera traps must be placed randomly with 
respect to the spatial distribution of animals. It is the 
issue of experimental design. (2) Cameras must certainly 
detect the animals entering the focal area throughout the 
research period. It is the issue of performance of cameras. 
(3) Animal density must not vary during the research 
period; (4) animal movement and behavior are not 
affected by cameras; (5) observations are independent 
events. These are the issue of animal behavior. (6) The 
observed distribution of staying time in the focal area 
must represent a good fit for the distribution that animal 
movements actually follow; (7) the observed staying 
time must follow a given parametric distribution. These 
are the issue of model structure. Nakashima et al. (2018) 
examined the violation of some assumptions and showed 
that the REST model provided unbiased estimates of ani­
mal density even when animal movement speeds varied 
among individuals, and when animals traveled in pairs. 
However, the REST model is vulnerable to unsynchro­
nized activity patterns among individuals.

Removal sampling
Removal sampling is to remove individuals from the 

target population repeatedly. Although the name is 
“removal” sampling, the sampled individuals are not 
necessarily removed eternally from the target population. 
For example, the removed individuals can be returned 
to the target population after the survey. Otherwise, an 
individual can be regarded as “removed” if an observer 
observes the individual and intentionally never counts the 
individual again (a mental removal protocol, Kéry and 
Royle 2015). Under the assumption of closed population 
and constant detection (catch) probability, the relation­
ship among the number of removed individuals in K times 
sampling occasions (Xk = (X1, X2, …, XK)), abundance 
(Nk = (N1, N2, …, NK)), and catch probability (p) can be 
modeled as below (Dorazio et al. 2005; Bord et al. 2014):

	 (39)

	 (40)

	 (41)

Nk is the abundance in kth sampling occasion, M is the 
arbitrary large number, and p is the catch probability. In 
addition to the above assumptions, the removal should 
reduce the true abundance marginally. In other words, 
removal sampling cannot be applied when the catch 
probability is very low or very high. For example, if the 
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removal is not effective to reduce wildlife and then the 
catch probability is very low, the number of removed 
individuals may be similar regardless of sampling occa­
sions. The abundance and catch probability can be esti­
mated even in such a situation if researchers conduct 
many, many samplings and the population closure is 
certainly satisfied during the survey period, but it is prac­
tically difficult to conduct such a sampling especially in 
the field.

The catch probability per unit effort may decrease with 
the increase of sampling occasions (Iijima 2017) because 
individuals with low vigilance (bold individuals) tend to 
be sampled earlier than those with high vigilance (Honda 
and Iijima 2016). Mäntyniemi et al. (2005) developed the 
heterogeneous catchability model, which assumes that 
the catch probability differs among individuals in the tar­
get population and individuals with high catch probability 
are caught at earlier sampling occasions. The model is 
expressed as below:

	 (42)

	 (43)

	 (44)

	 (45)

	 (46)

	 (47)

	 (48)

Xk is the number of caught individuals in the kth sampling 
occasion, Nk is the abundance in kth sampling occasion, qk 
is the catch probability in kth sampling occasion, and m 
is the mean catch probability of individuals in the target 
population. Because qk decrease with the sampling occa­
sions from equation (44), the mean catchability declines 
between consecutive removals but the decrease rate 
depends on the variation of the catchability in the initial 
population.

Harvest-based model
In recent years, the increase of some wildlife (e.g., sika 

deer Cervus nippon; Iijima et al. 2013) or the expansion 
of exotic species (e.g., the small Indian mongoose 
Herpestes auropunctatus; Fukasawa et al. 2013) causes 

the necessity of population management. In the popula­
tion management, it is necessary to estimate population 
abundance and the effect of harvest on population abun­
dance. In such situation, the population management 
rarely finishes within a short period (i.e., closed popula­
tion). Then, the model to estimate wildlife abundance of 
open population under harvesting pressure is necessary. 
Because the sampled individuals are not necessarily 
removed eternally from the target population and the 
target population should be closed in the removal sam­
pling model, another model should be defined. Here, I 
define “the harvest-based model” as the model that 
estimates wildlife abundance of open population under 
harvesting pressure and has the ecological process model 
that explicitly describes the decrease of abundance by the 
number of harvested wildlife.

Especially in targeting open population, sampling 
effort tends to differ spatially and temporally. Then, con­
stant catch probability cannot be satisfied. Furthermore, 
demographic rates should be estimated because the 
population size can change between any two sampling 
occasions by birth, natural mortality, or migration. The 
basic model structure of the harvest-based model is as 
below:

	 (49)

	 (50)

r is the population growth rate and pk is the catch proba­
bility in kth sampling occasion. As shown in equations 
(49) and (50), we need to estimate r and pk.

The Weibull catch-effort model (Barron et al. 2011; 
Fukasawa et al. 2013) treats the effect of sampling effort 
and its change with the increase of sampling occasions on 
catch probability as below:

	 (51)

pk is the detection probability in kth sampling occasion, 
a is the coefficient of catchability, Nk is the abundance in 
kth sampling occasion, Ek is the effort in kth sampling 
occasion, and b is the shape parameter of Weibull distri­
bution. The idea of the Weibull catch-effort model is that 
the detection probability increases with sampling effort 
but the degree of detection probability increase with 
sampling effort differs as the difference of parameter b.

To estimate demographic rates, it is useful to collect 
an abundance index in each sampling occasion. The 
abundance index is any data that is expected to correlate 
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with the true abundance. However, because the harvest-
based model explicitly treats the number of harvested 
individuals to reduce abundance in latent ecological 
process and the number of harvested individuals is 
affected by hunting effort and hunting efficiency (Iijima 
2017), the number of harvest individuals must not be 
used as abundance index in the harvest-based model 
although the number of harvested individuals are known 
to correlate with abundance (e.g., Ueno et al. 2014).

Let’s imagine the case of the three-year survey in esti­
mating the wildlife abundance and demographic rate. The 
number of harvested wildlife of each year (sampling 
occasion) is known as Xk = (X1, X2), and the wildlife 
abundance index in each sampling occasion is obtained 
as Ik = (I1, I2, I3). As the underlying process of wildlife, it 
is assumed that the wildlife abundance decreases by 
hunting (Xk) and increases by a constant annual popula­
tion growth rate (r). If the true abundance of wildlife is 
assumed as Nk = (N1, N2, N3) and the initial abundance 
index is assumed as I1 = 1, population dynamics can be 
expressed as below:

	 (52)

	 (53)

The abundance index of the second and third sampling 
occasions can be written as below:

	 (54)

	 (55)

By assigning equation (54) to equation (52) and equation 
(55) to equation (53), r can be obtained as below:

	 (56)

Because we can obtain X1, X2, I2, and I3 as data, we can 
estimate r. With r, we can also estimate Nk by assigning 
equation (56) into equations (52) and (53). The parameter 
identifiability will greatly improve if the abundance index 
is the absolute abundance or density. Then, the com­
bination of abundance estimation at certain period by 
models for the closed population with the harvest-based 
model is effective to increase parameter identifiability. 
Such a model can be regarded as an integrated popula­
tion model (IPM).

The monitoring of covariates that affect the demo­
graphic rate is also useful in estimating demographic 
rates. Sæther et al. (2008) and Iijima et al. (2013) used 

environmental covariates like rainfall and the type of 
landscape to model temporal and spatial differences of 
the annual population growth rate of wildlife. Iijima and 
Ueno (2016) used the percentages of deciduous forests, 
evergreen forests, and artificial grasslands to model 
spatial variation of carrying capacity of sika deer. Use of 
covariates contributes not only to increase parameter 
identifiability but also to strengthen the biological mean­
ing of results.

The implication for future wildlife abundance 
estimation

As explained above, various models to estimate wild­
life abundance have been developed. These models 
should be selected by considering the type of monitoring 
data and the assumptions of them (Table 1). Then, 
researchers need to select the appropriate model to esti­
mate wildlife abundance. Because it is not necessary to 
assume the distribution of abundance in models for 
marked individuals, the models should be used if it is 
applicable. Models for unmarked wildlife can be selected 
depending on the purpose of the study and the applicable 
monitoring methods (Fig. 1). If the density of target 
wildlife is too low, the application of the Royle-Nichols 
model that can estimate wildlife abundance by the 
spatially and temporally repeated measure of presence/
absence of target species (Royle and Nichols 2003) can 
be considered (please see the explanation of the N- 
mixture model).

In recent years, two conceptually important models to 
estimate wildlife abundance are developed: the hierarchi­
cal model and IPM. Regardless of target species or the 
type of monitoring data, the knowledge of the two models 
must be useful.

As mentioned above, the hierarchical model is the 
model with an ecological model that describes the 
ecological and latent process of target wildlife and an 
observation model that describes the process to observe 
the latent state of the target wildlife (Royle and Dorazio 
2008). In ecology, observations generally have large var­
iations caused by several factors such as observer, climate 
condition, and observation equipment. Furthermore, the 
systematic and ideal observations are sometimes im­
possible or practically difficult. Therefore, distinguishing 
the ecological process and observation process is very 
important to estimate ecological latent parameters like 
wildlife abundance.

By the distinction of ecological and process models, all 
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models for population abundance estimation that are 
shown above can be described with the same ecological 
model and different observation models depending on the 
sampling design and methods (Kéry and Royle 2015). 
Then, the hierarchical model affords researchers a clear 
understanding of the relationship between data and the 
ecological process of target wildlife. For these reasons, 
the hierarchical model will be the standard framework for 
population abundance estimation.

IPM is included in the hierarchical model and is the 
special class model to handle several data about different 
components of population dynamics (e.g., birth, natural 
mortality; Kéry and Schaub 2011). Actually, it often 
occurs that the different parameters about wildlife popu­
lation dynamics are collected by different researchers or 
research groups especially in the field of science. IPM can 
incorporate these various data about population dynamics 
because IPM can have an ecological model that includes 
the expected process of population dynamics of target 
wildlife and observation models about the observation 
process of each data. Then, the formalization of the abun­
dance estimation model as a hierarchical model and the 
construction of IPM by considering available data and 
the biological characteristics of target species are useful 
for future research.
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Table  1.  Characteristics of models for wildlife abundance estimation in this paper

Methods Individual  
marking

Population  
closure

Effective sampling  
area

Population  
density

Suitable area  
for application*

Typical monitoring  
data

CRa model for closed 
population

Required Required Not estimable Not estimable Intermediate Repeated wildlife capture

SECRb model Required Required Estimable Estimable Small Camera trapping

Jolly-Seber model Required Not required Not estimable Not estimable Intermediate Repeated wildlife capture

Distance sampling 
model

Not required Required Not estimable Estimable Intermediate Line or point count

N-mixture model Not required Required Not estimable Not estimable Intermediate Line or point count

REc model Not required Required Not estimable Estimable Small Camera trapping

RESTd model Not required Required Not estimable Estimable Small Camera trapping

Removal sampling 
model

Not required Required Not estimable Not estimable Large Repeated wildlife capture

Harvest-based model Not required Not required Not estimable Not estimable Large Hunting bag, capture effort 
and/or abundance index

a: Capture-recapture.
b: Spatially explicit capture-recapture.
c: Random encounter.
d: Random encounter and staying time.
* It is only relative evaluation among these methods.

Fig.  1.  Guide to select models for wildlife abundance estimation.
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