

Neogene Radiolarian Biostratigraphy and Faunal Evolution Rates in the Eastern Equatorial Pacific ODP Sites 845 and 1241

Authors: Kamikuri, Shin-Ichi, Motoyama, Isao, Nishi, Hiroshi, and Iwai, Masao

Source: Acta Palaeontologica Polonica, 54(4): 713-742

Published By: Institute of Paleobiology, Polish Academy of Sciences

URL: https://doi.org/10.4202/app.2008.0076

The BioOne Digital Library (<u>https://bioone.org/</u>) provides worldwide distribution for more than 580 journals and eBooks from BioOne's community of over 150 nonprofit societies, research institutions, and university presses in the biological, ecological, and environmental sciences. The BioOne Digital Library encompasses the flagship aggregation BioOne Complete (<u>https://bioone.org/subscribe</u>), the BioOne Complete Archive (<u>https://bioone.org/archive</u>), and the BioOne eBooks program offerings ESA eBook Collection (<u>https://bioone.org/esa-ebooks</u>) and CSIRO Publishing BioSelect Collection (<u>https://bioone.org/csiro-ebooks</u>).

Your use of this PDF, the BioOne Digital Library, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Digital Library content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne is an innovative nonprofit that sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Neogene radiolarian biostratigraphy and faunal evolution rates in the eastern equatorial Pacific ODP Sites 845 and 1241

SHIN-ICHI KAMIKURI, ISAO MOTOYAMA, HIROSHI NISHI, and MASAO IWAI

Kamikuri, S., Motoyama, I., Nishi, H., and Iwai, M. 2009. Neogene radiolarian biostratigraphy and faunal evolution of ODP Sites 845 and 1241, eastern equatorial Pacific. *Acta Palaeontologica Polonica* 54 (4): 713–742. doi:10.4202/app.2008.0076

Radiolarians from Sites 845 and 1241 in the eastern equatorial Pacific were examined in order to evaluate the role of paleoceanographic perturbations upon the general faunal evolutionary pattern of tropical planktonic organisms during the last 17 Ma. Radiolarian appearance and extinction rates indicate no periods of mass extinctions during the past 17 Ma. However, a relatively rapid replacement of the species in the radiolarian assemblages occurs near the middle–late Miocene boundary. This replacement event represents the gradual extinction of a number of radiolarian species and their gradual replacement by evolving new species. The modern equatorial circulation system was formed near the middle–late Miocene boundary due to the closure of the Indonesian seaway. The minor faunal turnover appears to be associated with the formation of the modern equatorial circulation system near the middle–late Miocene boundary. Diatom assemblages in the equatorial Pacific became more provincial in character after about 9 Ma. The appearance and extinction rates of planktic foraminifers were relatively high near the middle–late Miocene boundary, and those of calcareous nannoplankton reached high values in the early late Miocene in the equatorial Pacific Ocean. Thus, faunal evolution from the middle Miocene type to late Miocene types occurred first, being followed by floral evolution. The middle–late Miocene boundary is not a sharp boundary for planktonic microfossils, but marks a time of transition critical for faunal and floral evolution in both siliceous and calcareous microfossil assemblages in the equatorial Pacific Ocean.

Key words: Radiolaria, biostratigraphy, faunal evolution, middle-late Miocene boundary, eastern equatorial Pacific.

Shin-ichi Kamikuri [kamikuri@geol.tsukuba.ac.jp] and Isao Motoyama [isaomoto@sakura.cc.tsukuba.ac.jp], Department of Earth Evolution Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; Hiroshi Nishi [hnishi@mail.sci.hokudai.ac.jp], The Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan;

Masao Iwai [iwaim@kochi-u.ac.jp], Department of Natural Science, Kochi University, Kochi 780-8520, Japan.

Received 6 October 2008, accepted 16 June 2009, available online 17 July 2009.

Introduction

Various evidences support minor faunal and floral turnover at the early middle Miocene, early late Miocene, latest Miocene, and late Pliocene but none of these was described as a mass extinction event. So far documented faunal/florar turnovers seem to operate in conjuction with increasing high-latitude cooling and/or reorganization of oceanic circulation associated with the closure of oceanic gateways (e.g., Thomas 1985; McGowran 1986; Wei and Kennett 1986; Chaisson and Leckie 1993; Takayama 1993; Barron 1992, 2003; Barron and Baldauf 1995). Although these numerous studies of faunal and floral evolution and paleoceanographic relations have been published using planktonic organisms such as planktonic foraminifera and diatoms, evolutionary studies of radiolarians in a paleoceanographic context are rare. Because radiolarians inhabit a wider range of water depths and occupy a broader range of water niches than planktonic foraminifera and diatoms (e.g., Renz 1976; Kling 1979; Anderson 1993; Casey

Acta Palaeontol. Pol. 54 (4): 713–742, 2009

1993; Kling and Boltovskoy 1995; Yamashita et al. 2002), a paleontologic examination of radiolarian assemblages through time can help clarify the nature of evolutionary turnover.

Environmental control of diversity and evolutionary rates in the Neogene radiolarian fauna has been investigated by Lazarus (2002) and Johnson and Nigrini (1985). Lazarus (2002) reconstructed the diversity and faunal turnover history of Antarctic Neogene radiolarians based on the rangechart data of three authors (Caulet 1991; Abelmann 1992; Lazarus 1992), and compared the patterns to environmental change such as paleotemperature, sea level, and marine productivity, which are the primary controlling factors of evolution. His results suggested that radiolarian faunal turnover is associated with the enhanced glaciation and increased productivity shifts in the middle Miocene (ca. 15-13 Ma) and latest Miocene (ca. 7-4 Ma) on or around Antarctica. Johnson and Nigrini (1985) correlated fifty Neogene radiolarian appearance and extinction events in an east-west transect of the equatorial Indian and Pacific oceans, and showed that

	A	TN	TS2004	1		Calcareous hannofossil Annofossil Planktic foraminifera		ifera	Radiolaria									
ime (Ma)		pocn	Chron		olarity			Planktic foramin	Riedel and Sanfilippo (1970)	Nigrini (1971)	Riedel and Sanfilippo (1978)	Johnson et al. (1989)	Moore (1995)	Sanfilippo and (1998)	Nigrini			
			0		<u>n</u>		5	(1000)	B. invaginata			B. invaginata	B. invaginata	B. invaginata	RN17			
	ale	Ξ	I	n		CIVIC	, br	N22		C. tuberosa	Lamprocvrtis	C. tuberosa	C. tuberosa	C. tuberosa	RN16 RN15			
1	istoce	۲	C1			CN14	а			Amphirhopalum ypsilon	haysi	Amphirhopalum ypsilon	Amphirhopalum ypsilon	Amphirhopalum ypsilon	RN14			
	Ple	Ear	I	r		CN13	b			Anthocyrtidium angulare		Anthocyrtidium angulare	Anthocyrtidium angulare	Anthocyrtidium angulare	RN13			
2 -				n _	-		a		Pterocanium		Pterocanium prismatium	Pterocanium	Pterocanium	Pterocanium	DNIAO			
		a)	C2 1	r			d c		prismatium		prioritatian	prismatium	prismatium	prismatium	RN12			
3-	le	late	1	n		CN12	b	N20/21				A. jengnisi Stichocorys	Anthocyrtidium	Lychnodictyum				
	cer		C2A				a		Spongaster		Spansatar	P fistula	jenghisi	audax	KINTT			
4 -	IЩ		I	r	CN11 b			pentas		pentas	P. doliolum	P. doliolum	P. doliolum	RN10				
		arly				$\frac{\text{CN11}}{\text{CN10}} \frac{\text{c}}{\text{b}}$												
		ê	1	n				N19				Anthocyrtidium prolatum						
5-			C3 .					CN10			Stichooonvo				Stichocorys	Stichocorys		
			1	r			а	N18	peregrina		011		peregrina	peregrina	RN9			
6 -	-			_							peregrina							
			C3A	n			b											
7				r		CN9												
			C3B	r –				N17	Ommatartus		Ommatartus		Didymocyrtis	Didymocyrtis	RN8			
				n			2		penultimus		penultimus		penultima	penultima				
8 -		e	C4				a		Ommatartus		Ommatartus		Didymocyrtis	Didymocyrtis				
-		lat	1	r 🗌			_		antepenultimus		antepenultimus		antepenultima	antepenultima	RN/			
9 -			C4A	n 📕	CN		CN8 N16											
10							_		A									
						CN7	CN7 N		cannartus petterssoni		petterssoni		Diartus	Diartus	RN6			
			C5			CN6					-		pellerssom	pellerssom				
11-	ane			-				N14										
-	ioce		I	r 🛓			b	N14.0										
12-	Σ					CNE												
				n		CIND			a <i>i</i>									
40			C5A	r			a	N12	Cannartus laticonus									
13-			C5AA															
		e	C5AB	n			Цł	N11			Dorcadospyris alata		Dorcadospyris alata	Dorcadospyris alata	RN5			
14-		lidd	C5AC	n		_	Γ	N10	Dorcadosovris		Grata		andia	andia				
		Ľ	C5AD ^I	n		CN4	· †	N9	alata									
15			C5AD ^{III} N9															
10-						Ţ												
			000 1	r				NR										
16-		-				CN3		110	Calocycletta costata		Calocycletta costata		Calocycletta costata	ta Calocycletta F				
-		۲l	C5C	C5C ⁿ														
17		e	1	r														

Fig. 1. Correlation of Neogene calcareous nannoplankton, planktic foraminifera and radiolarian zones. ATNTS, astromically tuned Neogene time scale (Ogg and Smith, 2004).

most of the studied radiolarian species first evolved in the Indian ocean and subsequently in the western and eastern Pacific ocean. However, it has not been examined whether radiolarian appearances and disappearances are concentrated

during short time intervals, because they studied a limited number of species. Thus, the detailed history of radiolarian faunal change in the tropics remains to be investigated.

Radiolarians are abundant with high diversity in the tropical Pacific, where they have been widely used primarily as a biostratigraphic tool for dating and correlating Neogene marine sediments (Fig. 1). This progress of radiolarian biostratigraphy was achieved through biostratigraphic studies of numerous continuous sequences of deep sea cores, as well as by detailed taxonomic studies (e.g., Riedel and Sanfilippo 1970, 1971, 1978; Moore 1971, 1995; Nigrini 1971; Foreman 1973; Caulet 1979; Sanfilippo et al. 1985; Johnson et al. 1989; Lazarus et al. 1995; Sanfilippo and Nigrini 1998; Nigrini et al. 2006). Lazarus et al. (1995) and Sanfilippo and Nigrini (1998) provided paleomagnetically dated radiolarian events for the Neogene in the tropics. Despite these advances, many radiolarian events have yet not been paleomagnetically dated.

Here we will document radiolarian species appearance and extinction events for the past 17 Ma in the eastern equatorial Pacific and discuss their timing and relationship to global climatic and regional oceanographic changes to evaluate the influence of environmental change on the long-term evolution of the tropical planktonic fauna. For this purpose, we have documented the stratigraphic occurrences of 115 radiolarian species and recognized 152 radiolarian events at Ocean Drilling Program (ODP) Sites 845 and 1241 in the tropical Pacific Ocean. These events have been tied to the geomagnetic polarity time scale of Ogg and Smith (2004) through direct and indirect correlation.

Institutional abbreviation.—MPC, Micropaleontology Collection, National Museum of Nature and Science, Tokyo, Japan.

Other abbreviation.-mcd, meters composite depth.

Oceanographic setting

The modern Pacific equatorial circulation consists of three primary currents, the westward flowing North and South Equatorial Currents, and the eastward flowing Equatorial Countercurrent (Fig. 2). There were large differences in past tropical circulation patterns, when the Indonesian and Central American seaways were open to surface water circulation. During the early and middle Miocene, westward equatorial currents flowed continuously from the Atlantic, through the Pacific, and into the Indian Ocean through the Central American and Indonesian seaways. The modern equatorial circulation system was formed near the middle-late Miocene boundary due to the closure of the Indonesian Seaway (Kennett et al. 1985; Jian et al. 2006; Li et al. 2006). The surface-water exchange between the equatorial Atlantic and the Pacific continued until the late Pliocene (Cannariato and Ravelo 1997; Chaisson and Ravelo 2000).

Fig. 2. Modern surface water circulation and location of ODP Sites 845 and 1241 used to determine stratigraphic ranges of radiolarian species in the eastern equatorial Pacific Ocean. NEC, North Equatorial Current; ECC, Equatorial Countercurrent; SEC, South Equatorial Current.

Material and methods

Samples were obtained from ODP Leg 138 Site 845 (9°34.95'N, 94°35.45'W, water depth 3704 m) and ODP Leg 202 Site 1241 (5°50.570'N, 86°26.676'W, water depth 2027 m) in the eastern equatorial Pacific (Fig. 2). The sediments recovered from the two sites consist mainly of calcareous nannofossil ooze with foraminifers, diatom and well-preserved radiolarians.

We analyzed 54 samples from Site 845 and 116 samples from Site 1241. Freeze-dried and weighed sediment samples were placed into a beaker with a 3-5% solution of hydrochloric acid (HCl) to remove the calcareous fine fraction from the sediment before H₂O₂ treatment, because the calcareous fraction sometimes breaks the radiolarian shells during the intense effervescence of the hydrogen peroxide (H₂O₂) solution. Disaggregated particles were sieved through a 63-µm mesh sieve, and returned to a beaker. A solution of 5% H₂O₂ with a little sodium diphosphate decahydrate was added to the beaker and then boiled for 20 min. Wet residues, sieved through a 63-µm mesh, were dried in an oven at 40°C overnight. The clean sample was divided equally, using a plankton splitter, into subsamples big enough to obtain several thousand specimens per sample. One portion of the divided sample was scattered randomly on a glass slide on which a thin layer of gum tragacanth had been spread. Material was mounted using Canada balsam and a 24 × 40 mm cover glass. We counted radiolarian specimens to the end of the transverse line at which 500 specimens was exceeded. All specimens mounted on a slide were ob-

Fig. 3. Age-depth plot of Sites 845 and 1241. Geomagnetic polarity time scale is after Ogg and Smith (2004). The symbols "N1" to "N24", "F1" and "F2" for the control correspond to those in Tables 1 and 2.

served to confirm the occurrence of stratigraphic marker species. The studied slides are deposited in the micropaleontological reference collection of the National Science Museum, Tokyo, Japan: MPC 3277–3390, 4834–4889.

Age model

The ages of the radiolarian events are estimated using the sediment accumulation rate diagram for ODP Sites 845 and 1241 (Fig. 3). For the construction of the age-depth models for the middle Miocene to upper Pliocene sequence at Site 845, we plotted paleomagnetic data (Schneider 1995) and a few planktic foraminifer (Vincent and Toumarkine 1995) and calcareous nannoplankton events (Raffi and Flores 1995) from the intervals with poor paleomagnitic polarity records (Table 1). The diagram for the middle Miocene to Pleistocene sequence of Site 1241 is constructed based on marker calcareous nannoplankton biohorizons (Mix et al. 2003; Table 2 in the present study). The ages of planktic foraminifer and calcareous nannoplankton datum events recalibrated by Lourens et al. (2004) to the geomagnetic polarity time scale of Ogg and Smith (2004) are used in this study.

Radiolarian biostratigraphy

The low latitude radiolarian biostratigraphy and the code numbers of radiolarian zones as defined by Sanfilippo and Nigrini (1998) were used in this study (Fig. 1). The stratiTable 1. Magnetostratigraphic and biostratigraphic events (Raffi and Flores 1995; Schneider 1995; Vincent and Toumarkine 1995) used for the construction of the age-depth plots of Site 845. Abbreviations: F, planktic foraminifera; FO, first occurrence; LO, last occurrence; N, calcareous nannofossils.

		Datum	Age (Ma)	Depth (mcd)
N ₁	LO	Pseudoemiliania lacunosa	0.44	18.09/18.38
N ₃		Reentry medium Gephyrocapsa spp.	1.04	22.88/24.38
N ₅	LO	large Gephyrocapsa spp.	1.24	27.38/27.85
N ₆	FO	large <i>Gephyrocapsa</i> spp.	1.40	29.15/30.65
N	EO	Calcialscus macintyrei	1.0	36 66/38 15
No.	10	Discoaster brouweri	2.06	13 03/11 38
N ₁₀		Discoaster pentaradiatus	2.00	49.11/49.6
1 10	Ton	C2An 1r	3.032	53.88
	Тор	C2An.2n	3.116	54.98
	Тор	C2An.2r	3.207	55.98
	Тор	C2An.3n	3.33	57.38
	Тор	C2Ar	3.596	59.88
	Тор	C3n.1n	4.187	65.56
	Тор	C3n.1r	4.3	67.06
	Тор	<u>C3n.2n</u>	4.493	68.46
	Тор	C3n.2r	4.631	69.76
<u> </u>	Top	<u>C3n.3n</u>	4.799	/1.6
	Top	<u>C3n.3r</u>	4.896	72.05
	Top	C3n.4n	4.997	76
	Top	$C3\Lambda n \ln n$	6.033	87.51
<u> </u>	Top	C3An 1r	6 252	90.21
<u> </u>	Top	C3An 2n	6.436	92.51
<u> </u>	Top	C3Ar	6.733	96.28
	Top	C3Bn	7.14	101.18
	Тор	C3Br.1r	7.212	103.18
	Тор	C3Br.1n	7.251	103.71
	Тор	C3Br.2r	7.285	104.46
	Тор	C3Br.2n	7.454	106.86
	Тор	C3Br.3r	7.489	107.46
	Тор	C4n.1n	7.528	108.06
	Тор	C4n.1r	7.642	110.11
	Top	<u>C4n.2n</u>	7.695	111.01
	Top	C4r.Ir	8.108	119.28
	Top	C4r.1n	8.254	121.83
	Top	C4r.2r	0.5 8.661	122.15
	Base	C4r.2r-1	8.600	127.90
	Ton	C4An	8 769	120.00
	Top	C4Ar.1r	9.098	136.68
	Тор	C4Ar.1n	9.312	139.98
	Тор	C4Ar.2r	9.409	141.43
	Тор	C4Ar.2n	9.656	145.08
	Тор	C4Ar.3r	9.717	146.7
	Тор	C5n.1n	9.779	147.86
	Тор	C5n.1r	9.934	150.21
L	Тор	C5n.2n	9.987	150.76
<u> </u>	Тор	C5r.1r	11.04	164.93
<u> </u>	Top	C5r.1n	11.118	100.01
<u> </u>	Top	C5r.2r 1	11.134	100.0
<u> </u>	Base	C5r.2r-1	11.207	168.95
	Ton	C5r.2r-1	11.554	174.17
	Top	C5r.3r	11.614	175.77
	Top	C5An.1n	12.014	183.73
	Тор	C5An.1r	12.116	187.14
	Тор	C5An.2n	12.207	189.55
	Тор	C5Ar.1n	12.73	204.9
	Тор	C5Ar.2r	12.765	206.29
<u> </u>	Top	C5Ar.2n	12.82	208.08
<u> </u>	Top	C5Ar.3r	12.878	209.74
	Top	CSAAn	13.015	215./3
<u> </u>	Top	C5APr	13.183	219.98
E.	FO	Eohsella fohsi	13.309	220.02
N _{aa}	10	Sphenolithus heteromorphus	13.41	237 29/237 60
F ₂₂	FO	Fohsella praefohsi	13.77	251.73/252 54
N ₂₃	LO	Helicosphaera ampliaperta	14.91	278.95/279.71
N ₂₄	LO	acme Discoaster deflandrei	15.8	295.53/297.03

graphic distribution of radiolarians is presented in Figs. 4, 5, and 6. The studied sequence was divided into eleven radiolarian biozones from RN15 to RN4 at Site 845 and from Zones RN16 to RN6 at Site 1241 (Table 3, Figs. 4, 5). The radiolarian biostratigraphy of Site 845 was originally examined by Moore (1995), and subsequently herein. That of Site 1241 was established for the first time in this study. In this study, 115 morphotypes of radiolarians are identified, and 152 radiolarian events are recognized at the two sites (Appendix 1, Figs. 7–14).

Zone RN17 *Buccinosphaera invaginata* Range Zone (Nigrini 1971)

Definition: This zone is defined as the total range *Buccinosphaera invaginata* Haeckel, 1887.

Remarks: This zone was not sampled, because the core sampling began at a depth of 7.1 mcd at Site 1241 (0.33 Ma).

Zone RN16 *Collosphaera tuberosa* Interval Zone (Nigrini 1971 emended by Caulet 1979).

Definition: This zone corresponds to the stratigraphic interval from the first occurrence of *Buccinosphaera invaginata* (top) to the last occurrence of *Stylatractus universus* Hays, 1970 (Fig. 9O) (base).

Base interval: Sample 1241A-2H-3, 75–76 cm (8.6 mcd) through sample 1241A-2H-5, 75–76 cm (11.6 mcd).

Correlation and age: The basal datum of this zone (last occurrence of *Stylatractus universus*) corresponds to the upper part of calcareous nannoplankton Zone CN14 at Site 1241. The age of this zone is the Middle Pleistocene (0.18–0.42 Ma).

Zone RN15 *Stylatractus universus* Concurrent Range Zone (Caulet 1979 renamed by Johnson et al. 1989)

Definition: This zone corresponds to the stratigraphic interval from the last occurrence of *Stylatractus universus* (Fig. 9O) (top) to the first occurrence of *Collosphaera tuberosa* Haeckel, 1887 (Fig. 9N) (base).

Base interval: Sample 1241A-2H-5, 75–76 cm (11.6 mcd) through sample 1241A-2H-6, 75–76 cm (13.1 mcd).

Correlation and age: This zone is located with the middle part of calcareous nannoplankton Zone CN14. This zone spans a short interval from 0.42 to 0.60 Ma within the Middle Pleistocene.

Zone RN14 *Amphirhopalum ypsilon* Interval Zone (Nigrini 1971)

Definition: This zone corresponds to the stratigraphic interval between the first occurrence of *Collosphaera tuberosa* (Fig. 9N) (top) and the last occurrence of *Anthocyrtidium angulare* Nigrini, 1971 (Fig. 11C) (base).

Base interval: Sample 845B-2H-CC (25.0 mcd) through sample 845C-1H-CC (30.8 mcd), sample 1241A-3H-5, 75–77 cm (21.9 mcd) through sample 1241A-3H-6, 75–76 cm (23.4 mcd).

		Datum	Age (Ma)	Core, section interval	Depth (mcd)	Av. (mcd)
N ₁	LO	Pseudoemiliania lacunosa	0.44	2H-3, 75/2H-4, 75	8.60/10.10	9.35
N_2	LO	Reticulofenestra asanoi	0.91	3H-3, 75/3H-4, 75	18.91/20.41	19.66
N ₃		Reentry medium Gephyrocapsa	1.04	3H-4, 75/3H-5, 75	20.41/21.91	21.16
N_4	FO	Reticulofenestra asanoi	1.14	3H-5, 75/3H-CC	21.91/24.76	22.67
N_5	LO	Gephyrocapsa (large)	1.24	3H-CC/4H-1, 75	24.76/27.59	26.18
N ₆	FO	Gephyrocapsa (large)	1.46	4H-1, 75/4H-2, 75	27.59/29.09	28.34
N_7	LO	Calcidiscus macintyrei	1.60	4H-CC/5H-1, 75	36.51/37.87	37.19
N ₈	FO	Gephyrocapsa (medium)	1.67	5H-1, 75/5H-2, 75	37.87/39.39	38.63
No	LO	Discoaster brouweri	2.06	6H-1, 75/6H-2, 75	48.82/50.33	49.58
N ₁₀	LO	Discoaster pentaradiatus	2.39	7H-2, 75/7H-3, 75	60.69/62.2	61.45
N ₁₁	LO	Discoaster surculus	2.52	8H-4, 75/8H-5, 75	74.87/76.38	75.63
N ₁₂	LO	Sphenolithus spp.	3.65	10H-2, 75/10H-3, 75	92.87/94.37	93.62
N ₁₃	LO	Reticulofenestra pseudoumbilicus	3.79	10H-CC/11H-1, 75	100.68/101.95	101.32
N ₁₄	FO	Ceratolithus cristatus	5.12	15H-2, 75/15H-3, 75	144.38/145.89	145.14
N ₁₅	FO	Ceratolithus armatus	5.32	16H-3, 75/16H-4, 75	156.93/158.44	157.69
N ₁₆	LO	Discoaster quinqueramus	5.59	16H-6, 75/16H-7, 40	161.46/162.61	162.04
N ₁₇	LO	paracme Reticulofenestra pseudoumbilicus	7.08	24H-4, 75/24H-5, 75	245.33/246.84	246.09
N ₁₈	FO	Discoaster surculus	7.79	27H-CC/28H-1, 75	282.36/284.1	283.23
N ₁₉	FO	Discoaster berggrenii	8.29	29H-2, 75/29H-3, 75	295.85/297.35	296.6
N ₂₀	FO	paracme Reticulofenestra pseudoumbilicus	8.79	30H-7, 40/30H-CC	313.69/314.33	314.01
N21	LO	Coccolithus miopelagicus	11.02	39X-4, 75/39X-5, 75	405.61/407.11	406.36

Table 2. Biostratigraphic events (Mix et al. 2003) used for the construction of the age-depth plots of Site 1241. Abbreviations: FO, first occurrence; LO, last occurrence; N, calcareous nannofossils.

Table 3. Radiolarian events at Ocean Drilling Program (ODP) Sites 845 and 1241 with ages calibrated at each site. The ages after Lazarus (1995) and Sanfilippo and Nigrini (1998) have been updated to the ATNTS 2004 (Ogg and Smith, 2004). Abbreviations: FO, first occurrence; LO, last occurrence; ET, evolutionary transition.

	Zone		Radiolarian events	Fig.	Age* (Ma)	Age**	Site1241	Depth (mcd)	Age (Ma)	Site 845	Depth (mcd)	Age (Ma)
0	RN17	FO	Buccinosphaera invaginata Haeckel, 1887		0.18	0.30	no data			no data		
1	RN16	LO	Stylatractus universus Hays, 1970	90	0.42	0.45	2H-3, 75–76/ 2H-5, 75–76	8.6/ 11.6	0.40/ 0.54	no data		
2	RN15	FO	Collosphaera tuberosa Haeckel, 1887	9N	0.60	0.73	2H-5, 75–76/ 2H6, 75–76	11.6/ 13.1	0.54/ 0.61	no data		
3	RN14	FO	Axoprunum stauraxonium Haeckel, 1887	9P			2H-6, 75–76/ 3H-2, 77–79	13.1/ 17.4	0.61/ 0.81	no data		
4	RN14	LO	Didymocyrtis avita (Riedel, 1953)	9K			3H-2, 77–79/ 3H-3, 77–79	17.4/ 18.9	0.81/ 0.88	no data		
5	RN14	FO	Pterocorys hertwigii (Haeckel, 1887)	11Q			3H-5, 75–77/ 3H-6, 75–76	21.9/ 23.4	1.09/ 1.16	B-2HCC/ C-1HCC	25.0/ 30.8	1.11/ 1.50
6	RN14	LO	Pterocorys campanula Haeckel, 1887	11P			3H-5, 75–77/ 3H-6, 75–76	21.9/ 23.4	1.09/ 1.16	no data		
7	RN14	LO	Anthocyrtidium angulare Nigrini, 1971	11C	1.12	1.14	3H-5, 75–77/ 3H-6, 75–76	21.9/ 23.4	1.09/ 1.16	B-2HCC/ C-1HCC	25.0/ 30.8	1.11/ 1.50
8	RN13	FO	Lamprocyrtis nigriniae (Caulet, 1971)	11E		1.30	3H-6, 75–76/ 4H-1, 76–78	23.4/ 27.6	1.16/ 1.38	B-2HCC/ C-1HCC	25.0/ 30.8	1.11/ 1.50
9	RN13	FO	Pterocanium praetextum praetextum (Ehrenberg, 1872)	12N		4.20	3H-6, 75–76/ 4H-1, 76–78	23.4/ 27.6	1.16/ 1.38	B-2HCC/ C-1HCC	25.0/ 30.8	1.11/ 1.50
10	RN13	LO	Anthocyrtidium nosicaae Caulet, 1979	11N			3H-6, 75–76/ 4H-1, 76–78	23.4/ 27.6	1.16/ 1.38	B-2HCC/ C-1HCC	25.0/ 30.8	1.11/ 1.50
11	RN13	LO	Theocorythium vetulum Nigrini, 1971	11S		1.30	3H-6, 75–76/ 4H-1, 76–78	23.4/ 27.6	1.16/ 1.38	B-2HCC/ C-1HCC	25.0/ 30.8	1.11/ 1.50
12	RN13	FO	Pterocanium praetextum eucolpum Haeckel, 1887	120			4H-1, 76–78/ 4H-2, 76–78	27.6/ 29.1	1.38/ 1.47	B-2HCC/ C-1HCC	25.0/ 30.8	1.11/ 1.50
13	RN13	LO	Lamprocyrtis neoheteroporos Kling, 1973	11F			4H-2, 76–78/ 4H-3, 75–77	29.1/ 30.6	1.47/ 1.50	C-1HCC/ B-3HCC	30.8/ 32.3/	1.50/ 1.57
14	RN13	FO	Pterocorys minythorax (Nigrini, 1968)	11M			4H-4, 75–77/ 4H-5, 75–77	32.1/ 33.6	1.52/ 1.54	C-1HCC/ B-3HCC	30.8/ 32.3/	1.50/ 1.57
15	RN13	LO	Lamprocyrtis heteroporos (Hays, 1965)	11G			4H-4, 75–77/ 4H-5, 75–77	32.1/ 33.6	1.52/ 1.54	C-1HCC/ B-3HCC	30.8/ 32.3/	1.50/ 1.57
16	RN13	FO	Theocorythium trachelium dianae (Haeckel, 1887)	11L			4H-6, 75–77/ 6H-1, 75–77	35.1/ 48.8	1.57/ 2.03	B-3HCC/ A-4HCC	32.3/ 38.6	1.57/ 1.75
17	RN13	FO	Theocorythium trachelium trachelium (Ehrenberg, 1872)	11K		1.61	4H-6, 75–77/ 6H-1, 75–77	35.1/ 48.8	1.57/ 2.03	B-3HCC/ A-4HCC	32.3/ 38.6	1.57/ 1.75

KAMIKURI ET AL.--NEOGENE RADIOLARIANS FROM EASTERN EQUATORIAL PACIFIC

	7			E:-	Age*	A	6:4-1241	Depth	Age	0:4- 0.45	Depth	Age
	Zone		Radiolarian events	Fig.	(Ma)	Age**	Site1241	(mcd)	(Ma)	Site 845	(mcd)	(Ma)
18	RN13	FO	Anthocyrtidium angulare Nigrini 1971	11C		1.80	4H-6, /5–/// 6H-1, 75–77	35.1/ 48.8	1.5 //	A-4HCC	32.3/	1.5 //
10	RN13	10	Pterocanium prismatium	12B	1 75	1 71	4H-6, 75–77/	35.1/	1.57/	A-4HCC/	38.6/	1.75/
	In III	LO	Riedel, 1957	120	1.75	1.71	<u>6H-1, 75–77</u>	48.8	2.03	C-2HCC	41.4	1.92
20	RN12	FO	(Müller, 1855)	11R			6H-3, 75–777 6H-4, 77–79	51.8/	2.12/ 2.16	B-4HCC/ B-5HCC	45.1/ 49.6	2.08/
21	RN12	LO	Anthocyrtidium jenghisi	11A			6H-4, 77–79/	53.4/	2.16/	B-4HCC/	45.1/	2.08/
			Streeter, 1988 Cycladophora davisiana				<u>6H-5, /6–//</u> 7H-6, 62–64/	54.8	2.21	A-SHCC A-5HCC/	49.6	2.42
22	RN12	FO	Ehrenberg, 1861	12K			9H-3, 62–64	83.7	3.03	C-3HCC	51.9	2.76
23	RN12	LO	Lithelius klingi Kamikuri 2009	9R			7H-6, 62–64/ 9H-3, 62–64	66.6/ 83.7	2.44/	A-5HCC/	49.6/	2.42/
24	DN12	10	Larcospira moschkovskii Kruglikova,	<u>9</u> E			7H-6, 62–64/	66.6/	2.44/	A-5HCC/	49.6/	2.42/
24	KIN12	LU	1978	0E			<u>9H-3, 62–64</u>	83.7	3.03	C-3HCC	51.9	2.76
25	RN12	LO	(Campbell and Clark, 1944)	10Q			/H-6, 62–64/ 9H-3, 62–64	83.7	2.44/	B-5HCC/	51.9/	3.02
26	RN12	LO	Stichocorys peregrina	10P	2.74	2.71	7H-6, 62–64/	66.6/	2.44/	C-3HCC/	51.9/	2.76/
		-	Lamprocyrtis neoheteroporos	445			9H-3, 62–64/	83.7/	3.03/	B-5HCC/	53.8/	3.02
27	KNII	FO	Kling, 1973	IIF			9H-5, 62–64	86.7	3.21	A-6HCC	59.7	3.58
28	RN11	FO	Lamprocyrtis heteroporos (Hays 1965)	11G			9H-3, 62–64/ 9H-5, 62–64	83.7/ 86.7	3.03/	B-5HCC/	53.8/	3.02/
20	DN11	БО	Dictyophimus crisiae	120			9H-5, 62–64/	86.7/	3.21/	B-5HCC/	53.8/	3.02/
29	KNII	FU	Ehrenberg, 1854	120			<u>10H-3, 62–64</u>	94.2	3.66	A-6HCC	59.7	3.58
30	RN11	LO	(Seguenza, 1880)	11I			9H-5, 62–64/ 10H-3, 62–64	86.77 94.2	3.21/	A-6HCC/	53.8/	3.02/
31	RN11	LO	Anthocyrtidium ehrenbergi	11D			9H-5, 62–64/	86.7/	3.21/	B-5HCC/	53.8/	3.02/
-			(Stöhr, 1880) Phormostichoartus fistula				<u>10H-3, 62–64</u> 9H-5, 62–64/	94.2	3.66	A-6HCC B-5HCC/	59.7	3.58
32	RN11	LO	Nigrini, 1977	10C		3.47	10H-3, 62–64	94.2	3.66	A-6HCC	59.7	3.58
33	RN11	LO	Lychnodictyum audax Biadal 1953	12A		3.59	9H-5, 62–64/	86.7/	3.21/	A-6HCC/	59.7/	3.58/
34	RN11	FO	Lamprocyclas maritalis polypora	111			10H-5, 62–64/	97.2/	3.72/	A-6HCC/	59.7/	3.58/
		10	Nigrini, 1967	115			<u>11H-3, 62–64</u>	104.8	3.90	B-6HCC	66.7	4.27
35	RN11	FO	Haeckel, 1887	8G		3.83	11H-3, 62–64	104.8	3.90	B-6HCC	66.7	4.27
36	RN11	LO	Spongaster pentas	8B		3.47	10H-5, 62–64/	97.2/	3.72/	A-6HCC/	59.7/	3.58/
37	DN11	10	Phormostichoartus doliolum	101	3.87	3 71	10H-5, 62–64/	97.2/	3.72/	A-6HCC/	59.7/	3.58/
51	KINII	LU	(Riedel and Sanfilippo, 1971)	101	5.67	5.71	<u>11H-3, 62–64</u>	104.8	3.90	B-6HCC	66.7	4.27
38	RN10	ET	Spongaster tetras tetras	8B, C			11H-4, 62–64 11H-5, 62–64	100.4/	3.94/	B-6HCC	66.7	4.27
39	RN10	FO	Spongaster tetras tetras	8C		3.96	11H-5, 62–64/	107.9/	3.99/	A-6HCC/	59.7/	3.58/
	DN ¹ (0)		Didymocyrtis penultima	0.0		2.04	<u>12H-3, 62–64</u> 11H-5, 62–64/	115./	4.23	A-6HCC/	59.7/	4.27
40	RN10	LO	(Riedel, 1957)	9G	4.19	3.96	12H-3, 62–64	115.7	4.23	B-6HCC	66.7	4.27
41	RN9	ET	Didymocyrtis avita– Didymocyrtis tetrathalamus	9K, L			12H-3, 62–64/ 12H-4, 62–64	115.7/	4.23/	A-6HCC/ B-6HCC	59.7/ 66.7	3.58/
42	RN9	FO	Pterocanium prismatium	12B		5 38	12H-3, 62–64/	115.7/	4.23/	B-6HCC/	66.7/	4.27/
		10	Riedel, 1957	120		5.50	12H-4, 62–64	117.3	4.27	A-7HCC B 6HCC/	69.8 66.7/	4.63
43	RN9	FO	Caulet, 1979	11N			<u>13H-3, 62–64</u>	125.6	4.53	A-7HCC	69.8	4.63
44	RN9	FO	Liriospyris reticulata	14F			12H-5, 62–64/	118.8/	4.32/	B-6HCC/	66.7/	4.27/
15	DNO	10	Botryostrobus bramlettei	100		1 50	13H-3, 62–64/	125.6/	4.53	A-/HCC	09.8	4.03
45	KN9	LO	(Campbell and Clark, 1944)	10G		4.58	13H-4, 62–64	127.1	4.57	too rare	((7)	4.07/
46	RN9	FO	Haeckel, 1887	11P			13H-4, 62–64/ 13H-5, 62–64	127.1/	4.577 4.62	A-7HCC	69.8	4.27/ 4.63
47	RN9	FO	Nephrospyris renilla	13E			14H-1, 62–64/	132.7/	4.74/	B-6HCC/	66.7/	4.27/
40	DATO	FO	Anthocyrtidium jenghisi	11.			14H-3, 62–64/ 15H-5, 62–64/	135./	4.83	A-/HCC A-7HCC/	69.8/	4.63/
48	KN9	FU	Streeter, 1988	IIA			16H-4, 62–64	158.3	5.36	B-7HCC	76.5	5.27
49	RN9	LO	(Campbell and Clark, 1944)	12F			15H-5, 62–64/ 16H-4, 62–64	148.8/	5.18/ 5.36	A-/HCC/ B-7HCC	76.5	4.63/
50	RN9	FO	Theocorythium vetulum	115			16H-4, 62–64/	158.3/	5.36/	B-7HCC/	76.5/	5.27/
-			Nigrini, 1971				<u>16H-5, 62–64</u> 16H-6, 62–64/	159.8	5.45	B-8HCC B-7HCC/	88.0	6.07 5.27/
51	RN9	LO	(Campbell and Clark, 1944)	8A		4.58	17H-4, 62–64	168.4	5.70	B-8HCC	88.0	6.07
52	RN9	LO	Solenosphaera omnitubus procera	9S			17H-4, 62–64/	168.4/	5.70/	B-7HCC/	76.5/	5.27/
52	DNO	10	Solenosphaera omnitubus omnitubus	0.1		5 1 4	17H-4, 62–64/	168.4/	5.70/	B-7HCC/	76.5/	5.27/
	KIN9		Riedel and Sanfilippo, 1971	91		5.14	17H-5, 62–64	169.9	5.73	B-8HCC	88.0	6.07

	-				Age*	4	<u> </u>	Depth	Age	C 1. 0.15	Depth	Age
	Zone		Radiolarian events	Fig.	(Ma)	Age**	Site1241	(mcd)	(Ma)	Site 845	(mcd)	(Ma)
54	RN9	FO	Spongaster pentas	8B			17H-5, 62–64/	169.9/	5.73/	B-7HCC/	76.5/	5.27/
		-	Riedel and Sanfilippo, 1970				17H-6, 62–64 20H 5, 62, 64/	171.4	<u>5.76</u> 6.31/	B-8HCC	88.0	6.07/
55	RN9	FO	(Bailey, 1856)	10F			21H-2, 62–64	202.4/	6.42	A-9HCC	92.1	6.40
56	RN9	FO	Spirocyrtis scalaris	104			20H-5, 62-64/	202.4/	6.31/	A-9H-5, 0-2/	88.1/	6.07/
50		10	Haeckel, 1887	10/1			21H-2, 62–64	208.7	6.42	A-9HCC	92.1	6.40
57	RN9	FO	(Popofsky 1913)	110			21H-4, 62–64/ 21H-5, 62–64	211.//	6.4 <i>11</i> 6.50	A-9H-5, 0–2/	88.1/ 92.1	6.07/
50	DNIO	TO	Siphostichartus corona	101		5 (1	21H-5, 62–64/	213.2/	6.50/	A-10H-2, 0–2/	93.6/	6.52/
38	KIN9	LU	(Haeckel, 1887)	105		3.01	22H-3, 62-64	220.7	6.63	B-9HCC	97.7	6.85
59	RN9	LO	Stichocorys johnsoni Caulet 1986	10R		6.44	21H-5, 62–64/ 22H-3, 62–64	213.2/	6.50/ 6.63	A-10H-2, 0–2/ B-9HCC	93.6/ 97.7	6.52/ 6.85
60	RN9	LO	Acrobotrys tritubus	120		5.84	22H-5, 62–64/	223.8/	6.69/	A-10H-2, 0–2/	93.6/	6.52/
			Riedel, 1957				<u>23H-3, 62–64</u> 23H-3, 62–64/	232.4	<u>6.84</u>	B-9HCC A-10H-2, 0-2/	97.7	6.85
61	RN9	FO	(Riedel, 1953)	9K			23H-5, 62–64	236.5	6.91	B-9HCC	97.7	6.85
62	RN9	LO	Calocycletta cladara Sanfilippo and Riedel 1992	14D			too rare			A-10H-2, 0–2/ B-9HCC	93.6/ 97.7	6.52/ 6.85
62	DNO	10	Calocycletta caepa	14E		6.1.1	23H-5, 62-64/	236.5/	6.91/	A-10H-5, 0–2/	98.1/	6.88/
03	KIN9	LU	Moore, 1972	14E		0.44	24H-3, 62–64	243.7	7.04	A-10HCC	102.1	7.17
64	RN9	ET	Stichocorys delmontensis– Stichocorys peregrina	10P, Q	6.89	6.81	23H-5, 62–64/ 24H-3 62–64	236.5/	6.91/ 7.04	A-10H-5, 0–2/ A-10HCC	98.1/	6.88/
(5	DNIO	БО	Botryostrobus auritus/australis	10D			25H-5, 62–64/	257.9/	7.31/	A-10HCC/	102.1/	7.17/
0.5	KINO	го	(Ehrenberg, 1884)	10D			26H-3, 62–64	265.6	7.45	B-10HCC	108.9	7.57
66	RN8	FO	Solenosphaera omnitubus procera Sanfilippo and Riedel 1974	9S			25H-5, 62–64/ 26H-3, 62–64	257.9/	7.31/ 7.45	A-10HCC/ B-10HCC	102.1/	7.17/
67	RN8	FO	Solenosphaera omnitubus omnitubus	9Т		6.94	25H-5, 62–64/	257.9/	7.31/	A-10HCC/	102.1/	7.17/
		10	Riedel and Sanfilippo, 1971	71		0.74	<u>26H-3, 62–64</u>	265.6	7.45	B-10HCC	108.9	7.57
68	RN8	LO	(Riedel, 1959)	9E		8.34	27H-3, 62–64	276.1	7.65	B-10HCC/	102.17	7.57
69	RN8	FO	Anthocyrtidium ophirense	11B			27H-3, 62-64/	276.1/	7.65/	B-10HCC/	108.9/	7.57/
			(Ehrenberg, 1872) Spirocyrtis gyroscalaris				<u>27H-5, 62–64</u> 27H-3, 62–64/	279.1	7.65/	A-11HCC B-10HCC/	113.0	7.79
70	RN8	FO	Nigrini, 1977	10E			27H-5, 62–64	279.1	7.71	A-11HCC	113.0	7.79
71	RN8	ET	Didymocyrtis antepenultima– Didymocyrtis penultima	9F, G			27H-5, 62–64/ 28H-3, 62–64	279.17	7.93	A-11HCC	108.9/	7.57/
72	RN8	LO	Diartus hughesi	91	7.74	7.80	27H-5, 62–64/	279.1/	7.71/	B-10HCC/	108.9/	7.57/
72	DNZ	ГО	Acrobotrys tritubus	120		0.24	28H-3, 62–64 28H-5, 62–64/	287.0	8.04/	A-11HCC/	113.0/	7.79
13	RN/	FO	Riedel, 1957	12Q		8.34	29H-3, 62–64	297.2	8.31	B-11H-CC	120.1	8.15
74	RN7	FO	(Campbell and Clark, 1944)	8A		8.61	28H-5, 62–64/ 29H-3, 62–64	290/ 297.2	8.04/ 8.31	B-11H-CC	120.1	8.15
75	RN7	LO	Dictyocoryne ontongensis	8F			too rare			A-11HCC/	113.0/	7.79/
76	DN7	LO	Lophocyrtis tanythorax	120			28H-5, 62–64/	290/	8.04/	A-11HCC/	113.0/	8.15 7.79/
/0	KIN /	LO	(Sanfilippo and Riedel, 1970)	150			29H-3, 62-64	297.2	8.31	B-11H-CC	120.1	8.15
77	RN7	LO	Lophocyrtis brachythorax (Sanfilinno and Biadal 1070)	13D			28H-5, 62–64/	290/	8.04/	A-11HCC/	113.0/	7.79/
		-	Lophocyrtis neatum	105			29H-3, 62-64/	297.2/	8.31/	B-11HCC/	120.1	8.15/
78	RN7	FO	(Sanfilippo and Riedel, 1970)	13B			29H-5, 62-64	300.2	8.39	A-12HCC	123.7	8.40
79	RN7	LO	Phormostichoartus marylandicus	10H			29H-3, 62–64/	297.2/	8.31/	B-11HCC/	120.1/	8.15/
			Pterocanium korotnevi				29H-5, 62-64/	300.2	8.39/	A-12HCC/	123.7/	8.40/
80	RN7	FO	(Dogiel, 1952)	12G			30H-1, 62–64	304.9	8.53	B-12HCC	130.6	8.81
81	RN7	LO	Botryostrobus miralestensis	10B		8.80	29H-5, 62–64/ 30H-1, 62–64	300.2/	8.39/	A-12HCC/ B-12HCC	123.7/	8.40/ 8.81
82	RN7	10	Diartus petterssoni	01		8 80	30H-1, 62–64/	304.9/	8.53/	A-12HCC/	123.7/	8.40/
02			(Riedel and Sanfilippo, 1970)	7J		0.00	<u>30H-3, 62–64</u>	307.9	8.61	B-12HCC	130.6	8.81
83	RN7	LO	Sanfilippo and Riedel, 1970	10AC		9.57	30H-5, 62-64/ 30H-5, 62-64	310.9	8.70	B-12HCC/ B-12HCC	125.77	8.40/ 8.81
84	RN7	FO	Larcospira quadrangula	8D			30H-7, 62–64/	313.9/	8.79/	B-12HCC/	130.6/	8.81/
05	DN7	EO	Stichocorys johnsoni	100			30H-7, 62–64/	313.9/	<u>8.79/</u>	B-12HCC/	130.6/	8.81/
65	KIN /	гU	Caulet, 1986	IUK			31H-1, 62–64	315.3	8.82	A-13HCC	134.7	9.00
86	RN7	ET	Lithopera neotera –Lithopera bacca	10AC	, AD		31H-1, 62–64/ 31H-3, 62–64	315.3/	8.82/ 8.89	A-13HCC/	130.6/	8.81/ 9.00
87	RN7	FO	Phormostichoartus doliolum	10I			31H-3, 62–64/	318.3/	8.89/	B-12HCC/	130.6/	8.81/
			(Riedel and Sanfilippo, 1971) Didymocyrtis laticonus–		-		<u>31H-5, 62–64</u> 31H-3, 62–64/	318.3/	<u>8.97</u> 8.89/	A-13HCC B-12HCC/	134.7	9.00
88	RN7	ET	Didymocyrtis antepenultima	9E, F			31H-5, 62–64	321.3	8.97	A-13HCC	134.7	9.00
89	RN7	ET	Diartus petterssoni–	9I, J	8.84		31H-3, 62–64/	318.3/	8.89/	B-12HCC/	130.6/	8.81/
			Diartus nugnesi	L	1		3111-3, 02-04	321.3	0.97	A-ISHCC	134./	9.00

KAMIKURI ET AL.--NEOGENE RADIOLARIANS FROM EASTERN EQUATORIAL PACIFIC

Image: Image: Image: Process and the second secon						A ge*			Denth	Age		Denth	Age
90 RN6 FO Interact page (172) 11H 231H-1 24-44 2327 9.12 AL2HCC 123.7 8.40 91 RN6 FO Durates baglesi 91 90.01 33H-6, 26-40 30.00 920 A.12HCC 123.7 8.40 92 RN6 FO Durates baglesi 91 90.01 33H-6, 26-40 30.00 920 A.12HCC 124.7 40.00		Zone		Radiolarian events	Fig.	(Ma)	Age**	Site1241	(mcd)	(Ma)	Site 845	(mcd)	(Ma)
M No. Difference program 111 The second seco	00	DNG	БО	Anthocyrtidium zanguebaricum	1111			31H-7, 62-64/	324.3/	9.04/	B-11HCC/	120.1/	8.15/
91 RN6 FD Durana bagines 91 No.1 2014	90	KINO	FO	(Ehrenberg, 1872)	IIH			32H-1, 62-64	327.9	9.12	A-12HCC	123.7	8.40
Image: Constraint of the second sec	91	RN6	FO	Diartus hughesi	9I		9.01	32H-3, 62–64/	330.9/	9.20/	A-13HCC/	134.7/	9.00/
92 RN6 FO Dimplement Size 10AD Number Size	-			(Campbell and Clark, 1944)				32H-5, 62-64	333.9	9.27	B-13HCC	140.6	9.53
B RN6 FO Anthecentation pilocenta: (Segmental BSD) 111 A 33145, G2-64 3444, M 9.57 A ALECC 12.0 7.71 94 RN6 10 Triotonia megalactis megalactis 83 35X, 1.62-64 35X, 9.94 9.81 1.01 5.61 5.71 7.62 5.74 1.03 7.75 7.61 7.75 7.61 7.74 1.03 7.75 7.61 7.75 7.61 7.75 7.61 7.75 7.61 7.74 7.74 7.75 7.74 7.75 7.76 <td< td=""><td>92</td><td>RN6</td><td>FO</td><td>Ehrenberg, 1872</td><td>10AD</td><td></td><td></td><td>33H-3, 62–64</td><td>340.4/</td><td>9.43/</td><td>B-13HCC/</td><td>134.77</td><td>9.00/</td></td<>	92	RN6	FO	Ehrenberg, 1872	10AD			33H-3, 62–64	340.4/	9.43/	B-13HCC/	134.77	9.00/
98 Rob 1/10 3HE 1, 62-64 35.1. 9.00 Different of the second	02	DNG	го	Anthocyrtidium pliocenica	117			33H-5, 62–64/	346.4/	9.57/	A-10HCC/	102.1/	7.17/
94 RN6 LO Trisolenta megalacits englateris 81 SSX.1, 62-64 358.3 9.80 B-BitCC 12.37 0 9.38 N.1.62-64 358.3 9.80 B-BitCC 12.37 0 358.3 9.80 A-HHCC 12.43 9.31 96 RN6 10 Perreshowskay, 1972 101. 355.5, 62.64 36.31 10.00 mon me 46.36.4 10.00 mon me 36.3 36.4 10.10 B-12HCC 13.04 8.51 30.03 36.2.64 37.1 10.10 B-12HCC 13.04 8.51 30.03 36.2.64 41.53 10.10 B-12HCC 13.04 8.51 13.00 10.53 10.33 B-12HCC 13.04 8.51 10.33 B-12HCC 13.04	93	KIN6	FO	(Seguenza, 1880)	111			34H-1, 62–64	351.1	9.69	B-10HCC	108.9	7.57
Detecting, 18/2 Detecting,	94	RN6	LO	Trisolenia megalactis megalactis	8J			35X-1, 62–64/	358.3/	9.86/	B-13HCC/	142.4/	9.53/
98 RN6 LO Displayment and fail (1979) 8K 1333-3 6-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 3-31-3 5-33 1-111CC 113-3 1-111CC 113-3 3-111CC				Ehrenberg, 18/2				35X-3, 62-64	361.3	9.93	A-14HCC	145.7	9.61
96 RN6 LO Piptropyrits subfit: Petrobeskaga, 1972 10L 35X-3, 62-64 46.43 10.00 too rare Petrobeskaga, 1972 97 RN6 FO Borryostrobus brandettei 100 100.2 35X-5, 62-64 46.43 10.00 borrare Petrobusko brandettei 98 RN6 LO Michocary sceffit 100 8.91 36X-1, 62-64 368.44 10.10 borrare 100 100.2 35X-5, 62-64 46.44 10.18 A.1176CC 113.00 10.15 100 RN5 LO Ornecopelic paneta 107 10.00 37X-162-64 395.44 10.31 A.1176CC 113.84 11.31 A-116CC 115.30 10.15 100 RN5 10.0 Burkind and Gol1, 1079 81 - 40X-5, 62-64 418.5 11.34 A-117CC 178.84 11.77 103 RN5 LO Somflippe and Riedel, 1970 10Z 12.02 no data A-17HCC 178.84 11.77 103 RN5 LO	95	RN6	LO	Biørklund and Goll, 1979	8K			35X-1, 02-04/ 35X-3, 62-64	361.3	9.93	A-14HCC	142.4/	9.61
96 RN0 LO 35X5.62-64/ (amplet) 36X5.62-64/ (amplet) 37X5.62-64/ (amplet) 37X5.62-64/ (amplet) <td>06</td> <td>DNG</td> <td>10</td> <td>Spirocyrtis subtilis</td> <td>101</td> <td></td> <td></td> <td>35X-3, 62-64/</td> <td>361.3/</td> <td>9.93/</td> <td>taa mama</td> <td></td> <td></td>	06	DNG	10	Spirocyrtis subtilis	101			35X-3, 62-64/	361.3/	9.93/	taa mama		
97 RN6 FO Intryouthus branchettel 10C 10.62 355, 52-64 364, 31 10.00 moant 98 RN6 LO Mathycorras wolfill 10N 8, 91 302, 16, 22-44 368, 41 10.18 A-1111CC 134, 90 90 88 99 RN6 LO Ormecapella paperia: 10N 90 353, 52-64 373, 41 10.18 A-1111CC 134, 90 90 100 373, 52-54 435, 11.34 A-1611CC 155, 11.50 101 11, 55 11.30 11.55 11.50 103 11, 55 11.34 A-1611CC 175, 31 11.60 101 RN6 LO Baptehondmathy 10A 400, 55, 62-64 418, 5 11.34 A-17HCC 178, 81 11.77 102 RN5 LO Chroteopall certage 102 12.02 no data A-17HCC 178, 81 11.77 103 RN5 LO Chroteopall certage 102 12.22 no data A-17HCC	90	KINU	LU	Petrushevskaya, 1972	IUL			35X-5, 62–64	364.3	10.00	too rare		
	97	RN6	FO	Botryostrobus bramlettei	10G		10.62	35X-5, 62–64/	364.3/	10.00/	too rare		
98 RN0 L0 Hacklei 1887 10N 8.91 36X.3.62-64 371.4 10.18 A-13HCC 11.24 B-16HCC 11.24				Stichocorvs wolffii				36X-1, 62-64	368.4/	10.10/	B-12HCC/	130.6/	8.81/
99 RN6 Lo Cyraccapsella japonica (Nalasseka, 1963) 10 y 10.00 37X-1.62-64 / 32.4 10.45 N-14RCC 15.30 10.45 100 RN6 Lo Collosphare braitsmorni Biger Lund and Goll, 1979 81 40X3, 62-64 415.5 11.31 8-16RCC 163.4 11.33 101 RN6 Lo Lithopera thornburgi Samilipo and Riedel, 1970 10AE 40X3, 62-64 415.5 11.34 8-16RCC 175.3 11.60 102 RN6 LO Dartas petersoni (Rieded ad Samilipo, 1970) 91 12.02 no data A A-17RCC 178.4 11.74 103 RN5 LO Cyracopsella cornuta 102 12.22 no data A A-17RCC 178.4 11.74 104 RN5 LO Orthospryris outringona 121 L no data A A-17RCC 178.4 11.74 105 RN5 LO Prerocanium Sp.TX 1224 no data A A-17RCC 178.4 11.74 </td <td>98</td> <td>RN6</td> <td>LO</td> <td>Haeckel, 1887</td> <td>10N</td> <td></td> <td>8.91</td> <td>36X-3, 62–64</td> <td>371.4</td> <td>10.18</td> <td>A-13HCC</td> <td>134.7</td> <td>9.00</td>	98	RN6	LO	Haeckel, 1887	10N		8.91	36X-3, 62–64	371.4	10.18	A-13HCC	134.7	9.00
Partice Partice <t< td=""><td>99</td><td>RN6</td><td>10</td><td>Cyrtocapsella japonica</td><td>10Y</td><td></td><td>10.00</td><td>37X-1,62-64/</td><td>379.4/</td><td>10.37/</td><td>B-14HCC/</td><td>153.0/</td><td>10.15/</td></t<>	99	RN6	10	Cyrtocapsella japonica	10Y		10.00	37X-1,62-64/	379.4/	10.37/	B-14HCC/	153.0/	10.15/
100 RN6 Lo Consignment and Coli, 1979 81 40.5: $0.2-44$ 41.5.9 A Hency C 16.8.4 11.2.8 101 RN6 LO Linopera Inormargi 100.8 400.5: $0.2-44$ 415.5 11.1.8 B-16HCC 175.3 11.60 102 RN6 FO During patronomic 1970 91 12.02 no data B-16HCC 175.8 11.78		Rito	LO	(Nakaseko, 1963)	101		10.00	37X-3, 62–64	382.4	10.45	A-15HCC	157.0	10.45
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	100	RN6	LO	Collosphaera brattstroemi Biørklund and Goll 1979	81			40X-3, 62-64/ 40X-5, 62-64	415.5/	11.24/	A-16HCC/ B-16HCC	168.4/	11.28/
	101	DNG	1.0	Lithopera thornburgi	1045			40X-3, 62-64/	415.5/	11.24/	B-16HCC/	175.3/	11.60/
102 RN6 FO Diarray peterssoni (Riedel and Samilippo, 1970) 9J 12.02 no data A-17HCC 178.45 11.20 103 RN5 LO Cyrtocapsella cornuta 10X 11.98 no data A-17HCC 178.45 11.20 104 RN5 LO Cyrtocapsella tetrapera 10Z 12.22 no data A-17HCC 178.45 11.20 105 RN5 LO Tholosypris anthopora 121 no data A-17HCC 178.45 11.20 106 RN5 LO Pterocanium sp. TX 12M no data A-17HCC 178.45 11.20 107 RN5 LO Giraffospris toxaria 12P no data A-17HCC 178.45 11.20 108 RN5 LO Giraffospris toxaria 12P no data A-17HCC 178.45 11.20 108 RN5 LO Theocorys? sp. Y 10AA no data A-17HCC 178.45 11.20 110 RN5	101	RN6	LO	Sanfilippo and Riedel, 1970	IOAE			40X-5, 62-64	418.5	11.31	A-17HCC	178.8	11.77
Instruction Instruction Image and the second secon	102	RN6	FO	Diartus petterssoni	9J	12.02		no data			A-17HCC/	178.8/	11.77/
103 RN5 LO Cyntocapsell aeropera (184,5 10X 11.98 no data APTRC 184,5 12,04 12,04 104 RN5 LO Cyntocapsell aeropera (184,5,12,04) 10Z 12,22 no data A-17RCC 178,45 12,04 105 RN5 LO Tholospyris authopora 121 no data A-17RCC 178,45 12,04 106 RN5 LO Pterocanium sp. TX 12M no data A-17RCC 178,48 11,74 107 RN5 LO Giraffospyris toxaria (Lifthepea arenzee 107 12,22 no data A-17RCC 178,48 11,74 108 RN5 LO Giraffospyris altata (Lifthepea arenzee 107 12,22 no data A-17RCC 178,48 11,74 109 RN5 LO Theocorys? sy,Y 10AA no data A-17RCC 178,48 11,74 110 RN5 LO Theocorys? sy,Y 10AA no data B-18HCC 184,56 12,04 <t< td=""><td></td><td></td><td></td><td>(Riedel and Santilippo, 1970)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>B-17HCC</td><td>184.5</td><td>12.04</td></t<>				(Riedel and Santilippo, 1970)							B-17HCC	184.5	12.04
104 RN5 LO Cymcapsella tetrapera (hackel, 1887) 102 12.22 no data A-17HCC/ B-17HCC 178.8/ 12.04 11.77/ B-17HCC 105 RN5 LO Thologyris anthopora (hackel, 1887) 121 no data A-17HCC/ B-17HCC 178.8/ 11.77/ H-17HCC 178.8/ 11.77/ H-17HCC 178.8/ 11.77/ H-17HCC 178.8/ 11.77/ H-17HCC 178.8/ 11.77/ H-17HCC 178.8/ 11.77/ H-17HCC 178.8/ 11.77/ H-17HCC 178.8/ 11.77/ H-178.8/ 11.77/ H-17HCC 178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-176.2/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-178.8/ 11.77/ H-184.5 10.71 12.22 no data B-17HCC/ H-178.8/ H-17HCC 178.8/ H-17HCC 11.77/ H-184.5 108 RN5 LO <i>Distrogeneria</i> (stata) (H-164.1, 157.8) 13F no data B-17HCC 178.8/ H-17HCC 11.77/ H-184.5 12.04 108 RN5 LO <i>Distrogeneria</i> (stata) 13F no data B-17HCC 11.8.5 12.04 111 RN5 FO <i>Distrogeneria</i> (stata) 9D no data B-17HCC	103	RN5	LO	Haeckel 1887	10X		11.98	no data			B-17HCC/	1/0.0/	12.04
Ind RNS LO Indexeds, 1887) Index Indexeds, 1887) Indexexed, 1887) Indexees, 1887)	104	DNE	τO	<i>Cyrtocapsella tetrapera</i>	107		12.22				A-17HCC/	178.8/	11.77/
105 RNS LO Tholospyris anthopora (Haeckel, 1887) 121 no data A-17HCC 17.77 106 RNS LO Pterocanium sp. TX 12M no data A-17HCC 17.83/ 11.77/ 107 RNS LO Giraffosyris toxaria (Haeckel, 1887) 12P no data A-17HCC/ 17.83/ 11.77/ 108 RNS LO Giraffosyris toxaria (Haeckel, 1970) 10T 12.22 no data A-17HCC/ 17.83/ 11.77/ 108 RNS LO Giraffosyris toxaria (Ridel, 1970) 10T 12.22 no data A-17HCC/ 17.83/ 11.77/ 109 RNS LO Difumeory and Riedel, 1970 10T 12.22 no data A-17HCC/ 17.83/ 11.77/ 110 RNS LO Difumoory and Riedel, 1970 13F no data A-17HCC/ 17.83/ 11.77/ 111 RNS LO Difumoory and Riedel, 1970 10A no data B-17HCC 18.48/ 12.04	104	KIND	LO	(Haeckel, 1887)	102		12.22	no data			B-17HCC	184.5	12.04
Indexed, 1887) Indexed	105	RN5	LO	Tholospyris anthopora	12I			no data			A-17HCC/	178.8/	11.77/
106 RNS LO Pterocomium sp. TX 12M no data R-17HCC 184.5 12.04 107 RNS LO Giraffospyris toxaria (Haeckel, 1887) 12P no data R-17HCC 184.5 12.04 108 RNS LO Lithopera renzae (Riedel, 1959) 10T 12.22 no data R-17HCC 178.45 12.04 109 RNS LO Dorcadospyris alata 13F no data R-17HCC 178.45 11.20 100 RNS LO Theocorys? sp. Y 10AA no data R-17HCC 178.45 12.04 111 RNS LO Didymocyris mammifera (Haeckel, 1887) 9D no data B-18HC2, 0-2/ 186.07 12.04 111 RNS FO Didymocyris mammifera (Campbell and Clark, 1944) 12F no data B-18HC2, 0-2/ 18.51 12.04 111 RNS FO Didymocyris mammifera (Campbell and Clark, 1944) 12F no data B-18HC2, 0-2/ 12.04 12.04 12.04				(Haeckel, 1887)							B-1/HCC	184.5	12.04
	106	RN5	LO	Pterocanium sp. TX	12M			no data			B-17HCC	184.5	12.04
Hor No. D LO (Hackel, 1887) LO and data B-17HCC 184.5 12.04 108 RNS LO Lithopera renzae 107 12.22 no data A-17HCC/ 178.45 12.04 109 RNS LO Dorcadospyris adata 13F no data A-17HCC/ 178.87 11.77/ 100 RNS LO Theocorrys? sp. Y 10AA no data A-17HCC/ 178.87 12.04 111 RNS LO Theocorrys? sp. Y 10AA no data B-18HC/ 184.5 12.04 111 RNS LO Didymocyrtis mammifera 9D no data B-18HC/ 184.0 12.17 112 RNS FO Cyrtocapsella japonica 10Y no data B-18HC/ 194.87 12.39/ 113 RNS FO Cyrtocapsella japonica 10Y no data B-18HC/ 194.87 12.39/ 114 RNS LO Calcocycletta cladara 14.89 no	107	DN5	10	Giraffospyris toxaria	12D			no data			A-17HCC/	178.8/	11.77/
108 RN5 LO Sanfilippo and Redel, 1970 12.22 no data A-1/HCC/ 178.8/ 11.7// 109 RN5 LO Dorcadospyris alata (Riedel, 1959) 13F no data A-17HCC/ 178.8/ 11.7// 110 RN5 LO Theocorrys?s p. Y 10AA no data A-17HCC/ 178.8/ 11.7// 111 RN5 LO Didymocyris mammifera (Hackel, 1887) 9D no data A-17HCC/ 178.8/ 11.7// 112 RN5 FO Didymocyris mammifera (Campbell and Clark, 1944) 12F no data B-18HCC 194.8/ 12.39/ 113 RN5 FO Cyrtocapsella japonica (Campbell and Clark, 1944) 12F no data B-18HCC 194.8/ 12.39/ 113 RN5 FO Cyrtocapsella japonica (Campbell and Clark, 194.3/ 12F no data B-18HCC 194.8/ 12.39/ 114 RN5 LO Calocycletta cladara 10Y no data B-19HCC 204.2 12.17/	107	KN3	LU	(Haeckel, 1887)	121			lio data			B-17HCC	184.5	12.04
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	108	RN5	LO	Lithopera renzae	10T		12.22	no data			A-17HCC/	184.5	12.04
109 RNS LO C. (Riedel, 1959) 13F no data B-17HCC 184.5 12.04 110 RN5 LO Theocorys? sp. Y 10AA no data A-17HCC 184.5 12.04 111 RN5 LO Didymocyris mammifera (Hacekel, 1887) 9D no data B-18HC2, 0-2/ 186.0/ 12.08/ 111 RN5 FO Dictyophimus splendens (Campbell and Clark, 1944) 12F no data B-18HCC/ 194.8/ 12.39/ 113 RN5 FO Cicorycletta robusta (Makaseko, 1963) 10Y no data B-18HCC/ 194.8/ 12.39/ 114 RN5 FO Calocycletta robusta (Makaseko, 1963) 10Y no data B-18HCC/ 194.8/ 12.39/ 114 RN5 FO Calocycletta robusta (Moore, 1971 14B no data B-19HCC/ 204.2 12.71/ 115 RN5 FO Callocycletta robusta (Moore, 1971 14D no data B-19HCC/ 204.2/ 12.71/ 116				Dorcadospyris alata							A-17HCC/	178.8/	11.77/
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	109	RN5	LO	(Riedel, 1959)	13F			no data			B-17HCC	184.5	12.04
International and the state of the	110	RN5	LO	Theocorys? sp. Y	10AA			no data			A-17HCC/	178.8/	11.77/
111 RN5 LO Dialymoty in miniperation 9D no data B-181-2, O=2 180,00 12,00 112 RN5 FO Dictyophimus splendens (Campbell and Clark, 1944) 12F no data B-181CC/ 189,0 12,17 113 RN5 FO Cyrtocapsella japonica (Nakaseko, 1963) 10Y no data B-181CC/ 194,8/ 12,39/ 114 RN5 FO Cyrtocapsella japonica (Nakaseko, 1963) 10Y no data B-181CC/ 194,8/ 12,39/ 114 RN5 FO Calocycletta robusta 14B no data B-19HCC 204,2 12,71 115 RN5 FO Calocycletta cladara 14D no data B-19HCC 204,2 12,71/ 116 RN5 ET Lithopera renzae- Lithopera renzae- AC 10T, AC no data B-19HCC/ 204,2 12,71/ 118 RN5 ET Didymocyrits mammifera- Didymocyrits laticonus 9D, E no data A-20HCC 211,1 12,91/ <				Didumonutis mammifona							B-17HCC	184.5	12.04
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	111	RN5	LO	(Haeckel, 1887)	9D			no data			A-18HCC	180.0/	12.08/
112 RNS FO (Campbell and Clark, 1944) 121 110 data B-19HCC 204.2 12.71 113 RNS FO $Cyrtocapsella japonica$ (Nakaseko, 1963) 10Y no data B-18HCC/ 194.8/ 12.37/ 114 RNS LO $Calocycletta robusta$ Moore, 1971 14B no data B-18HCC/ 194.8/ 12.37/ 115 RNS FO $Calocycletta cladara$ Sanfilippo and Riedel, 1992 14D no data B-19HCC/ 204.2/ 12.71/ 116 RNS FO $Calocycletta cladara$ Sanfilippo and Riedel, 1992 14D no data B-19HCC/ 204.2/ 12.71/ 116 RNS ET <i>Lithopera renzae-</i> <i>Lithopera neotera</i> AC no data B-19HCC/ 204.2/ 12.71/ 117 RNS LO <i>Lithomelissa</i> sp. B 12J no data B-19HCC/ 204.2/ 12.71/ 118 RNS ET <i>Didymocyrtis maminifera-</i> <i>Didymocyrtis laticonus</i> 9D, E no data A-20HCC/ 211.1 12.9	112	DN5	EO	Dictyophimus splendens	12E			no data			B-18HCC/	194.8/	12.39/
113 RN5 FO Cyrtocapsella japonica (Nakaseko, 1963) 10Y no data B-18HCC/ B-19HCC 124.8/ 204.2 12.39/ 12.71 114 RN5 LO Calocycletta robusta Moore, 1971 14B no data B-18HCC/ B-19HCC 204.2 12.71 115 RN5 FO Calocycletta cladara Sanfilippo and Riedel, 1992 14D no data B-19HCC 204.2/ 12.71/ L2.71/ 116 RN5 ET Lithopera renzae- Lithopera neotera 10T, AC no data B-19HCC/ A-20HCC 204.2/ 12.71/ L2.91 117 RN5 LO Lithomelissa sp. B 12J no data B-19HCC/ A-20HCC 204.2/ 12.71/ L2.91 118 RN5 ET Didymocyrtis mammifera- Didymocyrtis laticonus 9D, E no data B-20HCC 211.1 12.91 118 RN5 FO Didymocyrtis laticonus (Riede, 1959) 9E no data B-20HCC/ A-21HCC 213.8/ L2.97/ A-21HCC 12.97/ L3.8/ 120 RN5 FO Didymocyrtis laticonus (Haeckel, 1887) 9B 14.74<	112	KN3	10	(Campbell and Clark, 1944)	121			iio data			B-19HCC	204.2	12.71
Indicates (1903) Image: constraint of the system of the syst	113	RN5	FO	Cyrtocapsella japonica	10Y			no data			B-18HCC/	194.8/	12.39/
114 RN5 LO Differentiation 14B no data B-19HCC 204.2 12.71 115 RN5 FO Calocycletta cladara Sanfilippo and Riedel, 1992 14D no data B-19HCC 204.2 12.71 116 RN5 ET Lithopera renze- Lithopera neotera 10T, AC no data B-19HCC/ 204.2/ 12.71/ 117 RN5 LO Lithomelissa sp. B 12J no data B-19HCC/ 204.2/ 12.71/ 118 RN5 ET Didymocyrtis mammifera- Didymocyrtis laticonus 9D, E no data A-20HCC/ 211.1 12.91 118 RN5 FO Didymocyrtis laticonus 9D, E no data A-20HCC/ 211.4 13.22 120 RN5 FO Didymocyrtis laticonus 9E no data A-21HCC/ 221.4/ 13.22 120 RN5 LO Didymocyrtis tubaria (Haeckel, 1887) 9B 14.74 no data A-21HCC/ 221.4/ 13.22/ 121				Calocycletta robusta							B-18HCC/	194.8/	12.71
115 RN5 FO Calocycletta cladara Sanfilippo and Riedel, 1992 14D no data B-19HCC/ A-20HCC 204.2/ 211.1 12.91 116 RN5 ET Lithopera nenzae- Lithopera neotera 10T, AC no data B-19HCC/ 204.2/ 12.71/ A-20HCC 211.1 12.91 117 RN5 LO Lithomelissa sp. B 12J no data B-19HCC/ 204.2/ 12.71/ A-20HCC 211.1 12.91 117 RN5 LO Lithomelissa sp. B 12J no data B-19HCC/ 204.2/ 12.71/ A-20HCC 211.1 12.91 118 RN5 ET Didymocyrtis mannifera- Didymocyrtis laticonus 9D, E no data A-20HCC 211.1 12.91/ B-20HCC 211.1 12.91/ IB-20HCC 13.8 12.97/ IB-20HCC	114	RN5	LO	Moore, 1971	14B			no data			B-19HCC	204.2	12.71
Indication Santilippo and Riedel, 1992 1.0	115	RN5	FO	Calocycletta cladara	14D			no data			B-19HCC/	204.2/	12.71/
116RN5ETLintopera renzae- Lithopera neotera101, ACno dataB-19HCC/ A-20HCC204,2/ 211,112,71117RN5LOLithomelissa sp. B12Jno dataB-19HCC/ A-20HCC211,112.91118RN5ETDidymocyrtis mammifera- Didymocyrtis laticonus9D, Eno dataA-20HCC211,1/ A-20HCC12.91/118RN5FODidymocyrtis laticonus (Riedel, 1959)9D, Eno dataA-20HCC/ B-20HCC/213,8/12.97/119RN5FODidymocyrtis lubaria (Riedel, 1959)9Eno dataA-21HCC21.413.22/120RN5LODidymocyrtis tubaria (Haeckel, 1887)9B14.74no dataA-21HCC/221.4/13.22/121RN5LODidymocyrtis violina (Haeckel, 1887)9C15.05no dataA-21HCC/221.4/13.22/122RN5FOLithopera meotera (Haeckel, 1887)9C15.05no dataA-21HCC/221.4/13.22/122RN5FOLithopera meotera Sanfilipp and Riedel, 197010AC14.46no dataA-21HCC/221.4/13.22/123RN5FOLarcospira moschkovskii Kruglikova, 19788Eno dataA-21HCC/221.4/13.22/124RN5FOLarcospira moschkovskii Moore, 197214Eno dataA-22HCC/232.8/13.43/125RN5LODidymocyrtis bassanii (Carneval				Sanfilippo and Riedel, 1992	10T			no dutu			A-20HCC	211.1	12.91
117 RN5 LO Lithomelissa sp. B 12J no data $A-20HCC$ 211.1 12.71/ 118 RN5 ET Didymocyrtis mammifera- Didymocyrtis laticonus 9D, E no data $A-20HCC$ 211.1 12.91/ 118 RN5 ET Didymocyrtis laticonus 9D, E no data $A-20HCC$ 211.1/ 12.91/ 119 RN5 FO Didymocyrtis laticonus 9E no data $A-20HCC$ 213.8 12.97/ 120 RN5 FO Didymocyrtis laticonus 9E no data $A-21HCC$ 221.4/ 13.22/ 120 RN5 LO Didymocyrtis violina 9B 14.74 no data $A-21HCC/$ 221.4/ 13.22/ 121 RN5 LO Didymocyrtis violina 9C 15.05 no data $A-21HCC/$ 221.4/ 13.22/ 122 RN5 FO Larcospira moschkovskii 8E no data $A-21HCC/$ 23.8 13.43 123 RN5 <td>116</td> <td>RN5</td> <td>ET</td> <td>Liinopera renzae– Lithopera neotera</td> <td>AC</td> <td></td> <td></td> <td>no data</td> <td></td> <td></td> <td>A-20HCC/</td> <td>204.2/ 211.1</td> <td>12./1/</td>	116	RN5	ET	Liinopera renzae– Lithopera neotera	AC			no data			A-20HCC/	204.2/ 211.1	12./1/
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	117	DNS	IO		101						B-19HCC/	204.2/	12.71/
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	117	KND		Lunomelissa sp. B	12J			no data			A-20HCC	211.1	12.91
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	118	RN5	ET	Didymocyrtis mammifera–	9D, E			no data			A-20HCC/	211.1/	12.91/
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Diaymocyrtis laticonus							B-20HCC	213.8	12.9/
120 RN5 LO Didymocyrits tubaria (Haeckel, 1887) 9B 14.74 no data A-21HCC/ A-22HCC 221.4/ 232.8 13.43 121 RN5 LO Didymocyrtis violina (Haeckel, 1887) 9C 15.05 no data A-21HCC/ A-22HCC 232.8 13.43 121 RN5 LO Didymocyrtis violina (Haeckel, 1887) 9C 15.05 no data A-21HCC/ A-22HCC 232.8 13.43 122 RN5 FO Lithopera neotera Sanfilippo and Riedel, 1970 10AC 14.46 no data A-21HCC/ A-22HCC 232.8 13.43 123 RN5 FO Larcospira moschkovskii Kruglikova, 1978 8E no data A-21HCC/ A-22HCC 232.8 13.43 124 RN5 FO Calocycletta caepa Moore, 1972 14E no data A-22HCC 232.8/ 13.43/ 125 RN5 LO Didymocyritis bassanii (Carnevale, 1908) 9H no data A-22HCC/ A-23XCC 241.8 13.60	119	RN5	FO	(Riedel, 1959)	9E			no data			A-21HCC	213.8/	13.22
Los Los (Hackel, 1887) Jb H4.74 no data A-22HCC 232.8 13.43 121 RN5 LO Didymocyrtis violina (Hackel, 1887) 9C 15.05 no data A-21HCC/ 221.4/ 13.22/ 122 RN5 FO Lithopera neotera Sanfilippo and Riedel, 1970 10AC 14.46 no data A-21HCC/ 221.4/ 13.22/ 123 RN5 FO Larcospira moschkovskii Kruglikova, 1978 8E no data A-21HCC/ 221.4/ 13.22/ 124 RN5 FO Calocycletta caepa Moore, 1972 14E no data A-22HCC/ 232.8/ 13.43/ 125 RN5 LO Didymocyritis bassanii (Carnevale, 1908) 9H no data A-22HCC/ 232.8/ 13.43/	120	RN5	10	Didymocyrtis tubaria	0R		14 74	no data			A-21HCC/	221.4/	13.22/
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	120	ININJ		(Haeckel, 1887)	710		17./4	no uata			A-22HCC	232.8	13.43
122 RN5 FO Lithopera neotera Sanfilippo and Riedel, 1970 10AC 14.46 no data A-22HCC/ A-22HCC/ 232.8 13.43 123 RN5 FO Larcospira moschkovskii Kruglikova, 1978 8E no data A-21HCC/ 221.4/ 13.22/ 124 RN5 FO Larcospira moschkovskii Kruglikova, 1978 8E no data A-21HCC/ 221.4/ 13.22/ 124 RN5 FO Calocycletta caepa Moore, 1972 14E no data A-22HCC/ 232.8/ 13.43/ 125 RN5 LO Didymocyrits bassanii (Carnevale, 1908) 9H no data A-22HCC/ 232.8/ 13.43/	121	RN5	LO	Didymocyrtis violina (Haeckel 1887)	9C		15.05	no data			A-21HCC/	221.4/	13.22/
122 RN5 FO Sanfilippo and Riedel, 1970 10AC 14.46 no data A-22HCC 23.8 13.43 123 RN5 FO Larcospira moschkovskii Kruglikova, 1978 8E no data A-22HCC 232.8 13.43 124 RN5 FO Calocycletta caepa Moore, 1972 14E no data A-22HCC 232.8 13.43 124 RN5 FO Calocycletta caepa Moore, 1972 14E no data A-22HCC/ 232.8/ 13.43/ 125 RN5 LO Didymocyrtis bassanii (Carnevale, 1908) 9H no data A-22HCC/ 232.8/ 13.43/			-	Lithopera neotera	10:5			-			A-21HCC/	232.0	13.22/
123 RN5 FO Larcospira moschkovskii Kruglikova, 1978 8E no data A-21HCC/ A-22HCC 221.4/ 232.8 13.43/ 13.43 124 RN5 FO Calocycletta caepa Moore, 1972 14E no data A-22HCC/ A-22HCC/ 232.8/ 232.8/ 13.43/ 13.43/ A-23XCC 13.43/ 241.8 13.60 125 RN5 LO Didymocyrtis bassanii (Carnevale, 1908) 9H no data A-22HCC/ A-23XCC 232.8/ 241.8 13.43/ 13.43/ A-23XCC	122	RN5	FO	Sanfilippo and Riedel, 1970	10AC		14.46	no data			A-22HCC	232.8	13.43
International Kruglikova, 1978 OI International A-22HCC 232.8 13.43 124 RN5 FO Calocycletta caepa Moore, 1972 14E no data A-22HCC/ 232.8/ 13.43/ 125 RN5 LO Didymocyrtis bassanii (Carnevale, 1908) 9H no data A-22HCC/ 232.8/ 13.43/ A-23XCC 241.8 13.60 A-22HCC/ 232.8/ 13.43/	123	RN5	FO	Larcospira moschkovskii	8E			no data			A-21HCC/	221.4/	13.22/
124 RN5 FO Calocycletta caepa Moore, 1972 14E no data A-22HCC/ 232.8/ 13.43/ 125 RN5 LO Didymocyrtis bassanii (Carnevale, 1908) 9H no data A-22HCC/ 232.8/ 13.43/		1115	10	Kruglikova, 1978				no data			A-22HCC	232.8	13.43
125 RN5 LO Didymocyrtis bassanii (Carnevale, 1908) 9H no data A-22HCC/ A-23XCC 232.8/ 241.8 13.43/ 13.43/	124	RN5	FO	Moore 1972	14E			no data			A-22HCC/ A-23XCC	232.8/ 241.8	13.43/
123 KIN3 LO (Carnevale, 1908) 9H no data A-23XCC 241.8 13.60	105	DN/5	10	Didymocyrtis bassanii	011						A-22HCC/	232.8/	13.43/
	125	KIND		(Carnevale, 1908)	9H			no data			A-23XCC	241.8	13.60

	Zone		Radiolarian events	Fig.	Age*	Age**	Site1241	Depth (mcd)	Age (Ma)	Site 845	Depth (mcd)	Age (Ma)
126	RN5	LO	Eucyrtidium sp. O	105	(iviu)		no data	(incu)	(IVIU)	A-22HCC/	232.8/	13.43/
										A-23XCC	241.8	13.60
127	RN5	LO	Stichocorys armata	100			no data			A-22HCC/	232.8/	13.43/
			Haeckel, 1887							A-23XCC	241.8	13.60
128	RN5	FO	Lithopera thornburgi	10AE			no data			A-23XCC/	241.8/	13.60/
			Campo and Riedel, 1970							A-24ACC	245.7	12.05
129	RN5	LO	O'Connor 1997	10V			no data			A-23XCC/	241.8/	13.00/
			0 Collilo1, 1997							A-24ACC	243.7	13.03
130	RN5	LO	Carpocanium sp. X	10U			no data			A-24XCC	241.0/	13.63
			Lophocyrtis leptetrum							A-23XCC/	243.7	13.60/
131	RN5	LO	(Sanfilippo and Riedel, 1970)	13A			no data			A-24XCC	243.7	13.63
			Dictvocorvne ontongensis							A-24XCC/	243.7/	13.63/
132	RN5	FO	Riedel and Sanfilippo, 1971	8F			no data			A-25XCC	261.3	14.70
100	DNG	10	Valkyria pukapuka	100			1.			A-24XCC/	243.7/	13.63/
133	RN5	LO	O'Connor, 1997	12D			no data			A-25XCC	261.3	14.70
124	DN5	10	Liriospyris parkerae	10E			na data			A-24XCC/	243.7/	13.63/
134	KNS	LO	Riedel and Sanfilippo, 1971	12E			no data			A-25XCC	261.3	14.70
125	DNI5	10	Carpocanopsis bramlettei	10W			na data			A-24XCC/	243.7/	13.63/
155	KINJ	LU	Riedel and Sanfilippo, 1971	10 W			no data			A-25XCC	261.3	14.70
136	DN5	10	Acrocubus octopylus	1211			no data			A-24XCC/	243.7/	13.63/
150	KINJ	LU	Haeckel, 1887	12П			no uata			A-25XCC	261.3	14.70
137	RN5	10	Calocycletta virginis	14C		14 46	no data			A-24XCC/	243.7/	13.63/
157	KIN5	LU	(Haeckel, 1887)	140		14.40	iio data			A-25XCC	261.3	14.70
138	RN5	1.0	Calocycletta costata	14A		14 74	no data			A-24XCC/	243.7/	13.63/
100	10.0	20	(Riedel, 1959)			1.1.7.1	no dutu			A-25XCC	261.3	14.70
139	RN5	LO	Dendrospyris bursa	14G			no data			A-24XCC/	243.7/	13.63/
			Sanfilippo and Riedel, 1973							A-25XCC	261.3	14.70
140	RN5	FO	Dorcadospyris alata	13F		15.36	no data			A-26XCC/	270.8/	14.83/
			(Riedel, 1959)							A-2/XCC	280.8	14.99
141	RN5	ET	Dorcadospyris dentata–	13F, G	14.98		no data			A-26XCC/	2/0.8/	14.83/
			Dorcaaospyris alata							A-2/XCC	280.8	14.99
142	RN4	LO	Haadkal 1887	13G		15.18	no data			A-20ACC/	270.8/	14.65/
			Carpocanopsis favosa							A-2/ACC	270.8/	14.99
143	RN4	LO	(Haeckel 1887)	10AF			no data			A-27XCC	280.8	14.00/
			Liriospyris parkerae							A-26XCC/	270.8/	14.83/
144	RN4	FO	Riedel and Sanfilippo, 1971	12E		15.13	no data			A-27XCC	280.8	14.99
		-	Phormostichoartus corbula	1077						A-26XCC/	270.8/	14.83/
145	RN4	FO	(Harting, 1863)	10K			no data			A-27XCC	280.8	14.99
146	DNIA	10		0.0			1.			A-27XCC/	280.8/	14.99/
146	RN4	LO	Amphisphaera? sp. D	9Q			no data			A-28XCC	289.8	15.46
1 47	DN4	IO	Periphaena decora	014						A-27XCC/	280.8/	14.99/
147	KIN4	LU	Ehrenberg, 1873	9101			no data			A-28XCC	289.8	15.46
1/18	DN/	10	Spongodiscus klingi	<u>8</u> Ц			no data			A-27XCC/	280.8/	14.99/
1+0	1/1/14		Caulet, 1986	011			no uata			A-28XCC	289.8	15.46
149	RN4	10	Eucyrtidium diaphanes	10M			no data			A-27XCC/	280.8/	14.99/
1.17	10.17		Sanfilippo and Riedel, 1973	10171			no uuu			A-28XCC	289.8	15.46
150	RN4	FO	Acrocubus octopylus	12H			no data			A-29XCC/	299.6/	15.97/
		-	Haeckel, 1887	+				+		A-30XCC	309.1	16.17
151	RN4	LO	Didymocyrtis prismatica	9A		15.63	no data			A-29XCC/	299.6/	15.97/
			(Haeckel, 1887)					+		A-SUACC	200.0	15.07/
152	RN4	LO	Carpocanopsis cingulata	10AB			no data			A-29XCC/	299.0/	15.9//
L			Kieuei anu Saninippo, 1971		1					A-SUACC	509.1	10.17

*, eastern equatorial Pacific (Sanfilippo and Nigrini 1995); **, eastern equatorial Pacific (Lazarus et al. 1995).

Radiolarian events: The last occurrences of *Axoprunum stauraxonium* Haeckel, 1887, *Didymocyrtis avita* (Riedel, 1953), and *Pterocorys campanula* Haeckel, 1887 and the first occurrence of *Pterocorys hertwigii* (Haeckel, 1887) are recognized within this zone.

Correlation and age: This zone is approximately equivalent to the lower part of calcareous nannoplankton Zone CN14. The age of this zone is assigned to the Early to Middle Pleistocene (0.60–1.12 Ma).

Zone RN13 *Anthocyrtidium angulare* Interval Zone (Nigrini 1971)

Definition: This zone is defined as the interval from the last occurrence of *Anthocyrtidium angulare* (Fig. 11C) (top) to the last occurrence of *Pterocanium prismatium* Riedel, 1957 (Fig. 12B) (base).

Base interval: Sample 845A-4H-CC (38.6 mcd) through sample 845C-2H-CC (41.4 mcd), sample 1241A-4H-6, 75–77 cm (35.1 mcd) through sample 1241A-6H-1, 75–77 cm (48.8 mcd).

Radiolarian events: The following bioevents are recognized in this zone: seven first occurrences of *Lamprocyrtis nigriniae* (Caulet, 1971), *Pterocanium praetextum praetextum* (Ehren-

KAMIKURI ET AL.-NEOGENE RADIOLARIANS FROM EASTERN EQUATORIAL PACIFIC

Fig. 4. Stratigraphic distribution of selected radiolarian species at Site 1241.

Fig. 5. Stratigraphic distribution of selected radiolarian species at Site 845.

KAMIKURI ET AL.--NEOGENE RADIOLARIANS FROM EASTERN EQUATORIAL PACIFIC

Fig. 6. Radiolarian zones and ranges of stratigraphic valuable species at Sites 884 and 1241. Top and bottom lines mark the lower and upper limits of the location of datum levels, respectively. Even numbers shown in Table 3. Abbreviation: e, evolutionary transition.

berg, 1872), *Pterocanium praetextum eucolpum* Haeckel, 1887, *Pterocorys minythorax* (Nigrini, 1968), *Theocorythium trachelium trachelium* (Ehrenberg, 1872), *Theocorythium trachelium dianae* (Haeckel, 1887), and *Anthocyrtidium angu-*

lare, and four last occurrences of *Anthocyrtidium nosicaae* Caulet, 1979, *Theocorythium vetulum* Nigrini, 1971, *Lamprocyrtis neoheteroporos* Kling, 1973, and *Lamprocyrtis heteroporos* (Hays, 1965).

Fig. 7. Comparison of the appearance and extinction rates of radiolarians in the eastern equatorial Pacific during the last 17 Ma with a generalized benthic foraminiferal oxygen isotope curve and tectonic events. The isotope curve is after Mix et al. (1995) for the interval between 0 and 2.5 Ma and after Kennett (1986) for the interval between 2.5 and 17 Ma. The isotope curve has been updated to the ATNTS 2004 (Ogg and Smith, 2004) through paleomagnetic correlation provided by Barton and Bloemendal (1986). The isotope events are after Miller et al. (1991) and Barron and Baldauf (1990).

Correlation and age: This zone is placed within the calcareous nannoplankton Zone CN13. The age of this zone is the early Early Pleistocene (1.12–1.75 Ma).

Zone RN12 *Pterocanium prismatium* Interval Zone (Riedel and Sanfilippo 1970)

Definition: This zone corresponds to the stratigraphic interval from the last occurrence of *Pterocanium prismatium* (Fig. 12B) (top) to the last occurrence of *Stichocorys peregrina* (Riedel, 1953) (Fig. 10P) (base).

Base interval: Sample 845C-43H-CC (51.9 mcd) through sample 845B-5H-CC (53.8 mcd), sample 1241A-7H-6, 62–64 cm (66.6 mcd) through sample 1241A-9H-3, 62–64 cm (83.7 mcd).

Radiolarian events: Two first occurrences Pterocorys zancleus (Müller, 1855) and Cycladophora davisiana Ehrenberg, 1861, and four last occurrences Anthocyrtidium jenghisi Streeter, 1988, Lithelius klingi Kamikuri, 2009, Larcospira moschkovskii Kruglikova, 1978 and Stichocorys delmontensis (Campbell and Clark, 1944) are found in this zone.

Correlation and age: This zone corresponds to the interval from the lower part of calcareous nannoplankton Zone CN13 to the upper part of CN12. The age of this zone is assigned to the late late Pliocene (1.75–2.74 Ma). The Pliocene–Pleistocene boundary is located within the uppermost part of RN12.

Zone RN11 *Lychnodictyum audax* Interval Zone (Moore 1995 renamed by Sanfilippo and Nigrini 1998)

Definition: This zone corresponds to the interval from the last occurrence of *Stichocorys peregrina* (Fig. 10P) (top) to the last occurrence of *Phormostichoartus doliolum* (Riedel and Sanfilippo, 1971) (Fig. 10I) (base).

Base interval: Sample 845A-6H-CC (59.7 mcd) through sample 845B-6H-CC (66.7 mcd), sample 1241A-10H-5, 62–64 cm (97.2 mcd) through sample 1241A-11H-3, 62–64 cm (104.8 mcd).

Radiolarian events: Five first occurrences Lamprocyrtis neoheteroporos, Lamprocyrtis heteroporos, Dictyophimus crisiae Ehrenberg, 1854, Lamprocyclas maritalis polypora Nigrini, 1967 and Amphirhopalum ypsilon Haeckel, 1887, and five last occurrences Anthocyrtidium pliocenica (Seguenza, 1880), Anthocyrtidium ehrenbergi (Stöhr, 1880), Phormostichoartus fistula Nigrini, 1977, Lychnodictyum audax Riedel, 1953, and Spongaster pentas Riedel and Sanfilippo, 1970 are recognized in this zone.

Correlation and age: This zone is approximately equivalent to the lower part of Zone CN12. The basal datum of this zone (last occurrence of *Phormostichoartus doliolum*) has been recorded within the Chron C2A.r. This zone spans the Early

Fig. 8. Radiolarians from the early Miocene to Pleistocene of the eastern equatorial Pacific. A. *Spongaster berminghami* (Campbell and Clark, 1944). MPC-4845; 1241A-28H-03, 62–64 cm, T51/2; Zone RN7. B. *Spongaster pentas* Riedel and Sanfilippo, 1970. MPC-3363; 1241A-12H-03, 62–64 cm, W33/0; Zone RN9. C. *Spongaster tetras tetras* Ehrenberg, 1860. MPC-3332; 1241A-2H-03, 75–77 cm, Q52/3; Zone RN16. D. *Larcospira quadrangula* Haeckel, 1887. MPC-3357; 1241A-9H-05, 62–64 cm, E51/0; Zone RN11. E. *Larcospira moschkovskii* Kruglikova, 1978. MPC-4847; 1241A-29H-03, 62–64 cm, G47/0; Zone RN7. F. *Dictyocoryne ontongensis* Riedel and Sanfilippo, 1971. MPC-3303; 845A-13HCC, X31/2; Zone RN6. G. *Amphirhopalum ypsilon* Haeckel, 1887. MPC-3332; 1241A-2H-03, 75–77 cm, T45/0; Zone RN16. H. *Spongodiscus klingi* Caulet, 1986. MPC-3336; 1241A-3H-03, 77–79 cm, X26/1; Zone RN14. I. *Collosphaera brattstroemi* Bjørklund and Goll, 1979. MPC-3317; 845A-20HCC, K51/1; Zone RN5. J. *Trisolenia megalactis megalactis* Ehrenberg, 1872. MPC-3317; 845A-20HCC, Q53/0; Zone RN5. K. *Trisolenia megalactis costlowi* Bjørklund and Goll, 1979. MPC-3324; 845A-26XCC, G37/4; Zone RN5. Scale bars 100 µm.

Fig. 9. Radiolarians from the early Miocene to Pleistocene of the eastern equatorial Pacific. **A**. *Didymocyrtis prismatica* (Haeckel, 1887). MPC-3328; 845A-30XCC, J23/2; Zone RN4. **B**. *Didymocyrtis tubaria* (Haeckel, 1887). MPC-3328; 845A-30XCC, P23/0; Zone RN4. **C**. *Didymocyrtis violina* (Haeckel, 1887). MPC-3330; 845A-31X-03, 0–2 cm, K36/0; Zone RN4. **D**. *Didymocyrtis mammifera* (Haeckel, 1887). MPC-3320; 845A-22HCC, S46/3; Zone RN5. **E**. *Didymocyrtis laticonus* (Riedel, 1959). MPC-4855; 1241A-31H-05, 62–64 cm, R49/2; Zone RN6. **F**. *Didymocyrtis antepenultima* (Riedel and Sanfilippo, 1970). MPC-4849; 1241A-30H-01, 62–64 cm, J26/3; Zone RN7. **G**. *Didymocyrtis penultima* (Riedel, 1957). MPC-3373; 1241A-15H-05, 62–64 cm, U31/0; Zone RN9. **H**. *Didymocyrtis bassanii* (Carnevale, 1908). MPC-3322; 845A-24XCC, S48/4; Zone RN5. **I**. *Diartus hughesi* (Campbell and Clark, 1944). MPC-4847; 1241A-29H-03, 62–64 cm, T25/1; Zone RN7. **J**. *Diartus petterssoni* (Riedel and Sanfilippo, 1970). MPC-4863; 1241A-34H-01, 62–64 cm, R32/4; Zone RN6. **K**. *Didymocyrtis avita* (Riedel, 1953). MPC-3373; 1241A-15H-05, 62–64 cm, V51/0; Zone RN9. **L**. *Didymocyrtis tetrathalamus* (Haeckel, 1887). MPC-3322; 1241A-2H-03, 75–76 cm, X43/0; Zone RN16. **M**. *Periphaena decora* Ehrenberg, 1873. MPC-3326; 845A-28XCC, S37/0; Zone RN4. **N**. *Collosphaera tuberosa* Haeckel, 1887. MPC-3331; 1241A-2H-02, 75–76 cm, K23/0; Zone RN16. **Q**. *Amphisphaera*? sp. D. MPC-3326; 845A-28XCC, K18/4; Zone RN4. **R**. *Lithelius klingi* Kamikuri, 2009. MPC-3324; 845A-26XCC, W34/0; Zone RN5. **S**. *Solenosphaera omnitubus procera* Sanfilippo and Riedel, 1974. MPC-3383; 1241A-19H-05, 62–64 cm, U51/3; Zone RN9. **T**. *Solenosphaera omnitubus omnitubus* Riedel and Sanfilippo, 1971. MPC-4834; 1241A-22H-05, 62–64 cm, F36/0; Zone RN9. Scale bars 100 µm.

Fig.10. Radiolarians from the early Miocene to Pleistocene of the eastern equatorial Pacific. A. *Spirocyrtis scalaris* Haeckel, 1887. MPC-3337; 1241A-3H-04, 75–77 cm, M41/3; Zone RN14. B. *Botryostrobus miralestensis* (Campbell and Clark, 1944). MPC-4863; 1241A-34H-01, 62–64 cm, K43/3; Zone RN6. C. *Phormostichoartus fistula* Nigrini, 1977. MPC-4846; 1241A-28H-05, 62–64 cm, S46/0; Zone RN7. D. *Botryostrobus auritus/australis* (Ehrenberg, 1884). MPC-3333; 1241A-2H-05, 75–77 cm, H43/2; Zone RN15. E. *Spirocyrtis gyroscalaris* Nigrini, 1977. MPC-4843; 1241A-27H-03, 62–64 cm, R43/4; Zone RN8. F. *Botryostrobus aquilonaris* (Bailey, 1856). MPC-3333; 1241A-2H-05, 75–77 cm, K43/4; Zone RN16. G. *Botryostrobus appletei* (Campbell and Clark, 1944). MPC-4839; 1241A-25H-01, 62–64 cm, W37/2; Zone RN8. H. *Phormostichoartus marylandicus* (Martin, 1904). →

Downloaded From: https://complete.bioone.org/journals/Acta-Palaeontologica-Polonica on 17 Jun 2025 Terms of Use: https://complete.bioone.org/terms-of-use

730

to late Pliocene (2.74–3.87 Ma). The early–late Pliocene boundary is located within the lower part of RN11.

Zone RN10 *Phormostichoartus doliolum* Interval Zone (Johnson et al. 1989 emended by Moore 1995)

Definition: This zone is defined as the stratigraphic interval from the last occurrence of *Phormostichoartus doliolum* (Fig. 10I) (top) to the last occurrence of *Didymocyrtis penultima* (Riedel, 1957) (Fig. 9G) (base).

Base interval: Sample 845A-6H-CC (59.7 mcd) through sample 845B-6H-CC (66.7 mcd), sample 1241A-11H-5, 62–64 cm (107.9 mcd) through sample 1241A-12H-3, 62–64 cm (115.7 mcd).

Radiolarian events: This zone contains the first occurrence of *Spongaster tetras tetras* Ehrenberg, 1860 and the evolutionary transition from *Spongaster pentas* to *Spongaster tetras tetras*.

Correlation and age: This zone is correlated within Zone CN11. The base of this zone is placed within the middle part of the Chron C3Ar. The age of this zone is equivalent to the late early Pliocene (3.87–4.19 Ma) (Sanfilippo and Nigrini 1998).

Zone RN9 *Stichocorys peregrina* Interval Zone (Riedel and Sanfilippo 1970 emended by Moore 1995)

Definition: This zone is the interval from the last occurrence of *Didymocyrtis penultima* (Fig. 9G) (top) to the evolutionary transition from *Stichocorys delmontensis* (Fig. 10Q) to *Stichocorys peregrina* (Fig. 10P) (base).

Base interval: Sample 845A-10H-5, 0–2 cm (98.1 mcd) through sample 845A-10H-CC (102.1 mcd), sample 1241A-23H-5, 62–64 cm (236.5 mcd) through sample 1241A-24H-3, 62–64 cm (243.7 mcd).

Radiolarian events: The following bioevents are observed in this zone: twelve first occurrences of *Pterocanium prisma*tium, Anthocyrtidium nosicaae, Liriospyris reticulata (Ehrenberg, 1872), *Pterocorys campanula*, Nephrospyris renilla Haeckel, 1887, Anthocyrtidium jenghisi, Theocorythium vetulum, Spongaster pentas, Botryostrobus aquilonaris (Bailey, 1856), Spirocyrtis scalaris Haeckel, 1887, Pterocorys macroceras (Popofsky, 1913) and Didymocyrtis avita, and ten last occurrences of Botryostrobus bramlettei (Campbell and Clark, 1944), Dictyophimus splendens (Campbell and Clark, 1944), Spongaster berminghami (Campbell and Clark, 1944), Solenosphaera omnitubus omnitubus Riedel and Sanfilippo, 1971, Solenosphaera omnitubus procera Sanfilippo and Riedel, 1974, Siphostichartus corona (Haeckel, 1887), Stichocorys johnsoni Caulet, 1986, Acrobotrys tritubus Riedel, 1957, Calocycletta cladara Sanfilippo and Riedel, 1992, and Calocycletta caepa Moore, 1972 and an evolutionary transition from Didymocyrtis avita to Didymocyrtis tetrathalamus (Haeckel, 1887).

Correlation and age: This zone is correlated with the stratigraphic interval between the Zone CN9b and CN11. The base of this zone is placed within the middle part of the Chron C3Ar. The Miocene–Pliocene boundary is thought to be placed within the middle part of RN9. This zone ranges in age from the late Miocene to the early Pliocene (6.89–4.19 Ma).

Zone RN8 *Didymocyrtis penultima* Interval Zone (Riedel and Sanfilippo 1970 emended by Riedel and Sanfilippo 1978)

Definition: This zone is defined as the interval zone from the evolutionary transition from *Stichocorys delmontensis* (Fig. 10Q) to *Stichocorys peregrina* (Fig. 10P) (top) to the last occurrence of *Diartus hughesi* (Campbell and Clark, 1944) (Fig. 9I) (base).

Base interval: Sample 845B-10H-CC (108.9 mcd) through sample 845A-11H-CC (113.0 mcd), sample 1241A-27H-5, 62–64 cm (279.1 mcd) through sample 1241A-28H-3, 62–64 cm (287.0 mcd).

Radiolarian events: The following bioevents occurred in this zone: five first occurrences of *Botryostrobus auritus/australis* (Ehrenberg, 1884), *Solenosphaera omnitubus omnitubus*, *Solenosphaera omnitubus procera*, *Anthocyrtidium ophirense* (Ehrenberg, 1872) and *Spirocyrtis gyroscalaris* Nigrini, 1977, the last occurrence of *Didymocyrtis laticonus* (Riedel, 1959), and the evolutionary transition from *Didymocyrtis antepenultima* (Riedel and Sanfilippo, 1970) to *Didymocyrtis penultima*.

MPC-4852; 1241A-31H-07, 62–64 cm, K50/4; Zone RN6. I. Phormostichoartus doliolum (Riedel and Sanfilippo, 1971). MPC-3374; 1241A-16H-04, 62-64 cm, V24/3; Zone RN9. J. Siphostichartus corona (Haeckel, 1887). MPC-4836; 1241A-23H-05, 62-64 cm, G47/0; Zone RN9. K. Phormostichoartus corbula (Harting, 1863). MPC-4854; 1241A-31H-03, 62-64 cm, H44/2; Zone RN7. L. Spirocyrtis subtilis Petrushevskaya, 1972. MPC-3326; 845A-28XCC, X19/0; Zone RN4. M. Eucyrtidium diaphanes Sanfilippo and Riedel, 1973. MPC-3326; 845A-28XCC, K35/3; Zone RN4. N. Stichocorys wolffii Haeckel, 1887. MPC-3328; 845A-30XCC, L18/0; Zone RN4. O. Stichocorys armata Haeckel, 1887. MPC-3326; 845A-28XCC, K52/0; Zone RN4. P. Stichocorys peregrina (Riedel, 1953). MPC-4834; 1241A-22H-05, 62–64 cm, U49/0; Zone RN9. Q. Stichocorys delmontensis (Campbell and Clark, 1944). MPC-4851; 1241A-30H-05, 62–64 cm, M40/0; Zone RN7. R. Stichocorys johnsoni Caulet, 1986. MPC-4851; 1241A-30H-05, 62–64 cm, P42/0; Zone RN7. S. Eucyrtidium sp. Q. MPC-3325; 845A-27XCC, P40/1; Zone RN4. T. Lithopera renzae Sanfilippo and Riedel, 1970. MPC-3322; 845A-24XCC, W34/1; Zone RN5. U. Carpocanium sp. X. MPC-3324; 845A-26XCC, V42/4; Zone RN5. V. Carpocanium rubyae O'Connor, 1997. MPC-3323; 845A-25XCC, J44/2; Zone RN5. W. Carpocanopsis bramlettei Riedel and Sanfilippo, 1971. MPC-3328; 845A-30XCC, K44/1; Zone RN4. X. Cyrtocapsella cornuta Haeckel, 1887. MPC-3324; 845A-26XCC, P44/3; Zone RN5. Y. Cyrtocapsella japonica (Nakaseko, 1963). MPC-4885; 1241A-41X-03, 62–64 cm, O50/0; Zone RN6. Z. Cyrtocapsella tetrapera (Haeckel, 1887). MPC-3320; 845A-22HCC, P49/0; Zone RN5. AA. Theocorys ? sp. Y. MPC-3323; 845A-25XCC, U45/3; Zone RN5. AB. Carpocanopsis cingulata Riedel and Sanfilippo, 1971. MPC-3328; 845A-30XCC, X25/3; Zone RN4. AC. Lithopera neotera Sanfilippo and Riedel, 1970. MPC-4870; 1241A-36X-03, 62-64 cm, L49/2; Zone RN6. AD. Lithopera bacca Ehrenberg, 1872. MPC-3343; 1241A-4H-04, 75–77 cm, Q25/3; Zone RN13. AE. Lithopera thornburgi Sanfilippo and Riedel, 1970. MPC-4885; 1241A-41X-03, 62-64 cm, K36/4; Zone RN6. AF. Carpocanopsis favosa (Haeckel, 1887). MPC-3325; 845A-27XCC, R27/3; Zone RN4. Scale bars 100 µm.

Fig. 11. Radiolarians from the early Miocene to Pleistocene of the eastern equatorial Pacific. **A**. *Anthocyrtidium jenghisi* Streeter, 1988. MPC-3358; 1241A-10H-03, 62–64 cm, H56/0; Zone RN11. **B**. *Anthocyrtidium ophirense* (Ehrenberg, 1872). MPC-3333; 1241A-2H-05, 75–77 cm, M52/4; Zone RN15. **C**. *Anthocyrtidium angulare* Nigrini, 1971. MPC-3345; 1241A-4H-06, 75–77 cm, J45/0; Zone RN13. **D**. *Anthocyrtidium ehrenbergi* (Stöhr, 1880). MPC-3372; 1241A-15H-03, 62–65 cm, G21/0; Zone RN9. **E**. *Lamprocyrtis nigriniae* (Caulet, 1971). MPC-3333; 1241A-2H-05, 75–77 cm, Q17/2; Zone RN15. **F**. *Lamprocyrtis neoheteroporos* Kling, 1973. MPC-3345; 1241A-4H-06, 75–77 cm, G26/0; Zone RN13. **G**. *Lamprocyrtis heteroporos* (Hays, 1965). MPC-3349; 1241A-6H-04, 77–79 cm, W35/3; Zone RN12. **H**. *Anthocyrtidium zanguebaricum* (Ehrenberg, 1872). MPC-3361; 1241A-11H-04, 62–64 cm, O20/2; Zone RN10. **I**. *Anthocyrtidium pliocenica* (Seguenza, 1880). MPC-3371; 1241A-14H-05, 62–64 cm, A14/3; Zone RN9. **J**. *Lamprocyclas maritalis polypora* Nigrini, 1967. MPC-3333; 1241A-2H-05, 75–77 cm, G53/2; Zone RN15. **K**. *Theocorythium trachelium* (Ehrenberg, 1872). MPC-3332; 1241A-2H-05, 75–77 cm, G53/2; Zone RN15. **K**. *Theocorythium trachelium* (Ehrenberg, 1872). MPC-3332; 1241A-2H-05, 75–77 cm, G53/2; Zone RN15. **K**. *Theocorythium trachelium* (Ehrenberg, 1872). MPC-3332; 1241A-2H-05, 75–77 cm, G53/2; Zone RN15. **K**. *Theocorythium trachelium* (Ehrenberg, 1872). MPC-3332; 1241A-2H-05, 75–77 cm, G53/2; Zone RN15. **K**. *Theocorythium trachelium* (Ehrenberg, 1872). MPC-3332; 1241A-2H-05, 75–77 cm, G53/2; Zone RN15. **K**. *Theocorythium trachelium* (Ehrenberg, 1872). MPC-3332; 1241A-2H-05, 75–77 cm, G53/2; Zone RN15. **K**. *Theocorythium trachelium* (Ehrenberg, 1872). MPC-3332; 1241A-2H-03, 75–77 cm, P26/0; Zone RN14. →

Correlation and age: This zone is located within the lower part of CN9. The basal datum of this zone was recorded within C4n.1r. The age of this zone is the middle late Miocene (7.74–6.89 Ma).

Zone RN7 *Didymocyrtis antepenultima* Interval Zone (Riedel and Sanfilippo 1970 emended by Riedel and Sanfilippo 1978)

Definition: This zone is the stratigraphic interval between the last occurrence of *Diartus hughesi* (Fig. 9I) (top) and the evolutionary transition from *Diartus petterssoni* (Riedel and Sanfilippo, 1970) (Fig. 9J) to *Diartus hughesi* (Fig. 9I) (base).

Base interval: Sample 845B-12H-CC (130.6 mcd) through sample 845A-13H-CC (134.7 mcd), sample 1241A-31H-3, 62–64 cm (318.3 mcd) through sample 1241A-31H-5, 62–64 cm (321.3 mcd).

Radiolarian events: The following bioevents are found in this zone: seven first occurrences of Acrobotrys tritubus, Spongaster berminghami, Lophocyrtis neatum (Sanfilippo and Riedel, 1970), Pterocanium korotnevi (Dogiel, 1952), Larcospira quadrangula Haeckel, 1887, Stichocorys johnsoni and Phormostichoartus doliolum, seven last occurrences of Dictyocoryne ontongensis Riedel and Sanfilippo, 1971, Lophocyrtis tanythorax (Sanfilippo and Riedel, 1970), Lophocyrtis brachythorax (Sanfilippo and Riedel, 1970), Phormostichoartus marylandicus (Martin, 1904), Botryostrobus miralestensis (Campbell and Clark, 1944), Diartus petterssoni and Lithopera neotera Sanfilippo and Riedel, 1970, and two evolutionary transitions from Lithopera neotera to Lithopera bacca Ehrenberg, 1872 and from Didymocyrtis laticonus to Didymocyrtis antepenultima.

Correlation and age: This zone is located in the interval from the lower part of Zone CN9 to the upper part of CN8 and between Chrons C4n and C4An. The age of this zone corresponds to the middle late Miocene (8.84–7.74 Ma).

Zone RN6 *Diartus petterssoni* Interval Zone (Riedel and Sanfilippo 1970 emended by Riedel and Sanfilippo 1978)

Definition: This zone is defined as an interval between the evolutionary transition from *Diartus petterssoni* (Fig. 9J) to *Diartus hughesi* (Fig. 9I) (top) and the first occurrence of *Diartus petterssoni* (Fig. 9J) (base).

Base interval: Sample 845A-17H-CC (178.8 mcd) through sample 845B-17H-CC (184.5 mcd).

Radiolarian events: The following bioevents are observed in this study: five first occurrences Anthocyrtidium zangueba-

ricum (Ehrenberg, 1872), Diartus hughesi, Lithopera bacca, Anthocyrtidium pliocenica and Botryostrobus bramlettei, and seven last occurrences Trisolenia megalactis megalactis Ehrenberg, 1872, Trisolenia megalactis costowi Bjørklund and Goll, 1979, Spirocyrtis subtilis Petrushevskaya, 1972, Stichocorys wolffii Haeckel, 1887, Cyrtocapsella japonica (Nakaseko, 1963), Collosphaera brattstroemi Bjørklund and Goll, 1979, and Lithopera thornburgi Sanfilippo and Riedel, 1970.

Correlation and age: This zone is placed within the interval from the lower part of Zone CN8 to the upper part of Zone CN5a. The base of this zone is correlated with the boundary bewteen Chron C5r-C5An. This zone ranges in age from the latest middle Miocene to early late Miocene (12.02–8.84 Ma). The middle–late Miocene boundary is located within the lowermost part of RN6.

Zone RN5 *Dorcadospyris alata* Interval Zone (Riedel and Sanfilippo 1970 emended by Riedel and Sanfilippo 1978)

Definition: This zone is the interval between the first occurrence of *Diartus petterssoni* (Fig. 9J) (top) and the evolutionary transition from *Dorcadospyris dentata* Haeckel, 1887 (Fig. 13G) to *Dorcadospyris alata* (Riedel, 1959) (Fig. 13F) (base).

Base interval: Sample 845A-26H-CC (270.8 mcd) through sample 845A-27H-CC (280.8 mcd).

Radiolarian events: This zone includes 26 last occurrences (e.g., Cyrtocapsella tetrapera Haeckel, 1887, Dorcadospyris alata, Didymocyrtis bassanii (Carnevale, 1908), Lophocyrtis leptetrum (Sanfilippo and Riedel, 1970), Calocycletta virginis (Haeckel, 1887) (see Table 3), 10 first occurrences (Dictyophimus splendens, Cyrtocapsella japonica, Calocycletta cladara, Didymocyrtis laticonus, Lithopera neotera, Larcospira moschkovskii, Calocycletta caepa, Lithopera thornburgi, Dictyocoryne ontongensis, Dorcadospyris alata) and two evolutionary transitions (Lithopera renzae to Lithopera neotera and Didymocyrtis mammifera (Haeckel, 1887) to Didymocyrtis laticonus).

Correlation and age: The basal datum approximately coincides with the upper limit of Zone CN3. The age of this zone is equivalent to the middle Miocene (14.98–12.02 Ma).

Zone RN4 *Calocycletta costata* Interval Zone (Riedel and Sanfilippo 1970 emended by Riedel and Sanfilippo 1978)

Definition: This zone is defined as the interval from the evolutionary transition from *Dorcadospyris dentata* (Fig. 13G) to

M. Pterocorys minythorax (Nigrini, 1968). MPC-3333; 1241A-2H-05, 75–77 cm, M35/2; Zone RN15. N. Anthocyrtidium nosicaae Caulet, 1979. MPC-3361; 1241A-11H-04, 62–64 cm, V33/1; Zone RN10. O. Pterocorys macroceras (Popofsky, 1913). MPC-3339; 1241A-3H-06, 75–77 cm, L32/3; Zone RN13. P. Pterocorys campanula Haeckel, 1887. MPC-3341; 1241A-4H-02, 76–78 cm, V36/4; Zone RN13. Q. Pterocorys hertwigii (Haeckel, 1887). MPC-3335; 1241A-3H-02, 77–79 cm, S22/0; Zone RN14. R. Pterocorys zancleus (Müller, 1855). MPC-3332; 1241A-2H-03, 75–77 cm, G35/3; Zone RN16. S. Theocorythium vetulum Nigrini, 1971. MPC-3349; 1241A-6H-04, 77–79 cm, T44/4; Zone RN12.

Fig. 12. Radiolarians from the early Miocene to Pleistocene of the eastern equatorial Pacific. A. *Lychnodictyum audax* Riedel, 1953. MPC-3388; 1241A-21H-04, 62–64 cm, W15/1; Zone RN9. **B**. *Pterocanium prismatium* Riedel, 1957. MPC-3280; 845A-4HCC, R47/0; Zone RN13. **C**. *Dictyophimus crisiae* Ehrenberg, 1854. MPC-3333; 1241A-2H-05, 75–77 cm, U31/4; Zone RN15. **D**. *Valkyria pukapuka* O'Connor, 1997. MPC-3326; 845A-28XCC, O20/0; Zone RN4. **E**. *Liriospyris parkerae* Riedel and Sanfilippo, 1971. MPC-3324; 845A-26XCC, R39/0; Zone RN5. **F**. *Dictyophimus splendens* (Campbell and Clark, 1944). MPC-4835; 1241A-23H-03, 62–64 cm, K40/2; Zone RN9. **G**. *Pterocanium korotnevi* (Dogiel, 1952). MPC-3386; 1241A-20H-05, 62–64 cm, G24/0; Zone RN9. **H**. *Acrocubus octopylus* Haeckel, 1887. MPC-3326; 845A-28XCC, R39/4; Zone RN4. **I**. *Tholospyris anthopora* (Haeckel, 1887). MPC-3328; 845A-30XCC, P53/3; Zone RN4. **J**. *Lithomelissa* sp. B. MPC-3318; 845A-20HCC, P23/3; Zone RN5. **K**. *Cycladophora davisiana* Ehrenberg, 1861. MPC-3333; 1241A-2H-05, 75–77 cm, P28/2; Zone RN15. **L**. *Tholospyris kantiana* (Haeckel, 1887). MPC-3324; 845A-26XCC, X28/4; Zone RN5. **M**. *Pterocanium* sp. TX. MPC-3319; 845A-21HCC, X47/0; Zone RN5. **N**. *Pterocanium praetextum praetextum* (Ehrenberg, 1872). MPC-3357; 1241A-9H-05, 62–64 cm, E51/0; Zone RN11. **O**. *Pterocanium praetextum eucolpum* Haeckel, 1887. MPC-3338; 1241A-3H-05, 75–77 cm, R22/2; Zone RN14. **P**. *Giraffospyris toxaria* (Haeckel, 1887). MPC-3326; 845A-28XCC, R27/2; Zone RN4. **Q**. *Acrobotrys tritubus* Riedel, 1957. MPC-3299; 845A-11HCC, H48/2; Zone RN7. Scale bars 100 µm.

Fig. 13. Radiolarians from the early Miocene to Pleistocene of the eastern equatorial Pacific. A. *Lophocyrtis (Cyclampterium) leptetrum* (Sanfilippo and Riedel, 1970). MPC-3322; 845A-24XCC, R43/3; Zone RN5. B. *Lophocyrtis (Cyclampterium) neatum* (Sanfilippo and Riedel, 1970). MPC-4847; 1241A-29H-03, 62–64 cm, O14/0; Zone RN7. C. *Lophocyrtis (Cyclampterium) tanythorax* (Sanfilippo and Riedel, 1970). MPC-4854; 1241A-31H-03, 62–64 cm, L40/0; Zone RN7. D. *Lophocyrtis (Cyclampterium) brachythorax* (Sanfilippo and Riedel, 1970). MPC-4870; 1241A-36X-03, 62–64 cm, S32/3; Zone RN6. E. *Nephrospyris renilla* Haeckel, 1887. MPC-3337; 1241A-3H-04, 75–77 cm, T37/0; Zone RN14. F. *Dorcadospyris alata* (Riedel, 1959). MPC-3322; 845A-24XCC, R45/0; Zone RN5. G. *Dorcadospyris dentata* Haeckel, 1887. MPC-3328; 845A-30XCC, G39/0; Zone RN4. Scale bars 100 µm.

Fig. 14. Radiolarians from the early Miocene to Pleistocene of the eastern equatorial Pacific. A. *Calocycletta (Calocyclissima) costata* (Riedel, 1959). MPC-3324; 845A-26XCC, R19/4; Zone RN5. B. *Calocycletta (Calocycletta) robusta* Moore, 1971. MPC-3326; 845A-28XCC, Q40/3; Zone RN4. C. *Calocycletta (Calocycletta) virginis* (Haeckel, 1887). MPC-3326; 845A-28XCC, V46/3; Zone RN4. D. *Calocycletta (Calocycletta) cladara* Sanfilippo and Riedel, 1992. MPC-3299; 845A-11HCC, K47/4; Zone RN7. E. *Calocycletta (Calocycletta (Calocycletta) cladara* Sanfilippo and Riedel, 1992. MPC-3299; 845A-11HCC, K47/4; Zone RN7. E. *Calocycletta (Calocycletta (Calocycletta) cladara* Sanfilippo and Riedel, 1973. MPC-3325; 845A-27XCC, N27/0; Zone RN4. Scale bars 100 μm.

Dorcadospyris alata (Fig. 13F) (top) to the first occurrence of *Calocycletta costata* (Riedel, 1959) (Fig. 14A) (base).

Radiolarian events: The following bioevents occur in this zone: Eight last occurrences of Dorcadospyris dentata, Carpocanopsis favosa (Haeckel, 1887), Amphisphaera ? sp. D, Periphaena decora Ehrenberg, 1873, Spongodiscus klingi Caulet, 1986, Eucyrtidium diaphanes Sanfilippo and Riedel, 1973, Didymocyrtis prismatica (Haeckel, 1887) and Carpocanopsis cingulata Riedel and Sanfilippo, 1971, and three first occurrences of Liriospyris parkerae Riedel and Sanfilippo, 1971, Phormostichoartus corbula (Harting, 1863), and Acrocubus octopylus.

Correlation and age: This zone is correlated with the upper part of calcareous nannoplankton Zone CN3 (Sanfilippo and

Nigrini, 1998). This zone ranges in age from the latest early Miocene to early middle Miocene (14.98–17.03 Ma).

Discussion

Radiolarian events in the tropics.—We recognize 61 first occurrences, 81 last occurrences and 10 evolutionary transitions at the two sites (Table 3, Fig. 6). Most of the radiolarian events encountered in our study indicate high synchroneity between the two sites. Moore et al. (1993) found 39 radiolarian events since the late Miocene in the eastern equatorial Pacific. These events are also identified at Sites 845 and 1241, and are approximately synchronous. Johnson and

Nigrini (1985) recognized 50 radiolarian events through the Neogene in the equatorial Indo-Pacific and documented the degree of synchroneity or diachroneity. They identified and dated 29 radiolarian events at DSDP Site 503 in the eastern equatorial Pacific. Most of the 29 events are also identified at Sites 845 and 1241 in this study, and there is a good agreement with their ages between the three sites, although large differences are recognized in a few events including the first occurrence of Botryostrobus aquilonaris (Fig. 10F) and the last occurrence of Dendrospyris bursa (Fig. 14G), Eucyrtidium diaphanes (Fig. 10M), and Dorcadospyris alata (Fig. 13F). This indicates that the majority of the events identified by Johnson and Nigrini (1985) are synchronous within the restricted eastern equatorial Pacific region. However, among the 152 events that are identified in this study, the majority (123 out of 152) have not been well dated in the other sections, so we cannot discuss the degree of synchroneity of those datum levels over the tropical oceans. To provide a more refined high-resolution radiolarian biostratigraphy for more precise dating and correlation in the tropics, it will be important to examine more complete radiolarian sequences in other regions to determine the degree of synchroneity between regions and to select a number of useful secondary radiolarian biohorizons.

Radiolarian evolutionary patterns.-The ages of appearance and extinction events of 115 radiolarian species were determined for the eastern equatorial Pacific during the past 17 Ma. These data have allowed us to discuss the relationship between the evolutionary turnover of radiolarian species and paleoceanographic changes in the equatorial Pacific. The number of appearances and extinctions of radiolarians in one million year increments in the equatorial Pacific from 17.0 Ma to the present is plotted in Fig. 7. This figure suggests no periods of mass extinctions of radiolarians during the past 17 Ma. As discussed below, a relatively rapid replacement of radiolarian species in the assemblages occurred near the middle-late Miocene boundary. This turnover event represents the gradual extinction of a number of radiolarian species and their gradual replacement by newly evolved species.

During the middle Miocene (17.0 to 11.0 Ma), the appearance rate of tropical radiolarians did not exceed five events per one million year. Among the species that evolved during the middle Miocene, Phormostichoartus corbula (Fig. 10K) is the only extant radiolarian species. This species is distributed in the lower part of the intermediate water (500 to 1000 m of water depth) of the modern ocean (Kling and Boltovskoy 1995; see also Table 3 and Fig. 7 herein). The environmental character of intermediate water may be relatively stable since the middle Miocene in the equatorial Pacific. The rate of extinction of radiolarians during the middle Miocene is generally high. Between 15.0 and 11.0 Ma, extinction peaks of eight to ten events per one million year occurred in two intervals (15.0 to 13.0 Ma and 12.0 to 11.0 Ma). Therefore, the middle Miocene can be generally referred to as a minor extinction phase for radiolarians of the equatorial Pacific. These gradual extinctions during the middle Miocene may be indicating either that the number of niches was decreasing or that the environmental character of those niches was unstable in the eastern equatorial Pacific

Reduced rates of radiolarian appearance and extinction (# two events per one million year) are found at the earliest late Miocene (11.0 to 10.0 Ma). This faunal stagnation was probably related to less environmental perturbation in the region and/or more environmentally tolerant taxa.

During the late Miocene to the present (10.0 to 0 Ma), some of the evolving radiolarian species have survived up to the present time (Fig. 7). The appearances of surface-intermediate dwelling species [0-750 m; Anthocyrtidium zanguebaricum (Fig. 11H) and Lithopera bacca (Fig. 10A-D)] occurred first and were followed by that of surface dwelling species [0-300 m; e.g., Larcospira quadrangula (Fig. 8D), Pterocanium korotnevi (Fig. 12G), Lophocyrtis neatum (Fig. 13B) and Anthocyrtidium ophirense (Fig. 11B)]. Some intermediate-deep dwelling species, Botryostrobus aquilonaris (Fig. 10F), Liriospyris reticulata (Fig. 14F) and Dictyophimus crisiae (Fig. 12C), appeared at the latest Miocene and early Pliocene (Appendix 1). All of the radiolarian species that appeared after 3.0 Ma except for Anthocyrtidium angulare (Fig. 11C), Lamprocyrtis heteroporos (Fig. 11G) and Lamprocyrtis neoheteroporos (Fig. 11F), are still in existence (Table 3, Fig. 7). Thus, the late Miocene to Quaternary seems to have been characterized by a recovery phase for radiolarians of the equatorial Pacific. The rapid appearance (\geq five events per one million year) occurred in three intervals (9.0 to 7.0 Ma, 5.0 to 3.0 Ma, and 2.0 to 1.0 Ma), roughly every three million years. After 1.0 Ma, the appearance and extinction of equatorial Pacific radiolarians did not exceed two events per one million year.

As mentioned above, the evolution of Neogene radiolarian species is marked by three phases: the extinction phase (15.0 to 11.0 Ma, middle Miocene to earliest late Miocene), the survival phase (11.0 to 10.0 Ma, earliest late Miocene), and the recovery phase (10.0 to 0 Ma, late Miocene to Quaternary). This indicates that the minor faunal turnover of radiolarians occurred at the base of late Miocene (11.0 to 10.0 Ma).

In the Southern Ocean, the evolutionary turnover rates of radiolarians were relatively high during the middle Miocene (15 to 13 Ma) (Lazarus 2002). However, the increases of the turnover rates were not recognized at the base of late Miocene in the Southern Ocean. This is interpreted as an indication of global control of paleoceanographic changes during the middle Miocene and regional control during the early late Miocene upon the evolution of radiolarians.

The middle Miocene δ^{18} O increase (ca. 15 to 12 Ma) was a major step in the progression toward a cold polar climate which is interpreted as the expansion of the East Antarctic ice sheet and following cooling both surface and deep water (Miller et al. 1991; Zachos et al. 2001). Many radiolarian species that could not adapt to the low temperature water masses became extinct between 15.0 and 11.0 Ma. During this interval, the drop in chert abundance occurred in the Pacific Ocean (Moore 2008).

737

738

The oceanic circulation system of the equatorial Pacific changed stepwise during the early late Miocene and early Pliocene. The surface-water exchange between the Indian and the Pacific Oceans through the narrowing Indonesian seaway remained efficient during the late Miocene. As a result, an early western Pacific warm pool, Equatorial Undercurrent and Equatorial Countercurrent system were formed in the tropical Pacific Ocean at about 10 Ma (Kennett et al. 1985; Jian et al. 2006; Li et al. 2006). The strengthening of the Equatorial Undercurrent effected the large increases in siliceous biogenic productivity along the equator (van Andel et al. 1975; Theyer et al. 1985; Farrell et al. 1995: fig 27). The modern east-west gradient in equatorial Pacific surface hydrography appeared between 4.5 and 4.0 Ma (Cannariato and Ravelo 1997; Chaisson and Ravelo 2000). This hydrographic change was related to the closing of the Central American Seaway and subsequent changes in meridional temperature gradients and/or changes in air-sea interactions that modified the tropical winds. The increasing appearance of modern radiolarian species after 10.0 Ma encountered in our study seems to have resulted from the stepwise development of a modern circulation system and the subdivision of surface water masses.

Diatom assemblages in the equatorial and North Pacific became more provincial in character after about 9 Ma, because water mass barriers to the migration of North Pacific diatoms into the equatorial Pacific were strengthened due to the development of the modern circulation system in the equatorial Pacific (Barron 2003). The appearance and extinction rates of planktic foraminifers were relatively high near the Middlelate Miocene boundary (12 to 10 Ma; Wei and Kennett 1986), and those of calcareous nannoplankton reached high values in the early late Miocene (about 9 Ma) in the equatorial Pacific Ocean (Pujos 1985). Thus, faunal evolution (radiolarians and planktic foraminifers) from the middle Miocene type to late Miocene types occurred first, being followed by floral evolution (diatoms and calcareous nannoplankton). The middlelate Miocene boundary is not a sharp boundary for planktonic microfossils, but marks a time of transition critical for faunal and floral evolution in both siliceous and calcareous microfossil assemblages in the equatorial Pacific Ocean.

Conclusions

Identified 115 morphotypes of radiolarians at the ODP Sites 845 and 1241 (Figs. 8–14).

The studied sequence is divided into eleven zones from RN15 to RN4 at Site 845 and from Zones RN16 to RN6 at Site 1241.

The updated ages of 152 radiolarian events are estimated using the sediment accumulation rates for ODP Sites 845 and 1241. Paleomagnetic data, planktic foraminifer and calcareous nannoplankton events are used for the construction of the age-depth models at Site 845. The diagram for the middle Miocene to Pleistocene sequence of Site 1241 was constructed based on calcareous nannoplankton marker biohorizons. The general faunal evolutionary and extinction rates of tropical radiolarians were reconstructed and discussed in the context of global and regional environmental changes. The evolution of Neogene radiolarian species is marked by three stages: extinction stage (15.0 to 11.0 Ma), survival stage (11.0 to 10.0 Ma) and recovery stage (10.0 Ma to the present). The middle Miocene extinction was in response to an expansion of Antarctic ice sheets. Many species presented in the recent sediments have appeared since ca. 10 Ma. The increasing appearance of modern radiolarian species since the middle Miocene seems to have resulted from the stepwise development of the modern circulation system.

The middle–late Miocene boundary is not a sharp boundary for planktonic microfossils, but marks a time of transition critical for faunal and floral evolution in both siliceous and calcareous microfossil assemblages in the equatorial Pacific Ocean.

Acknowledgements

We are grateful to Annika Sanfilippo (Scripps Institution of Oceanography, La Jolla, USA) and Kjell R. Bjørklund (Natural History Museum, University of Oslo, Norway) for their critical reviewing the manuscript. This work was financially supported by a Grant-in-Aid for Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (number 20·1155) to the first author. This research used samples and/or data provided by the Ocean Drilling Program (ODP).

References

- Abelmann, A. 1992. Early to mid-Miocene radiolarian stratigraphy of the Kerguelen Plateau (ODP Leg 120). *In*: S.W. Wise Jr., R. Schlich, A.A. Palmar Julson, and E. Thomas (eds.), *Proceedings of the Ocean Drilling Program, Scientific Results* 120: 757–784. College Station, TX (Ocean Drilling Program).
- Anderson, O.R. 1993. The trophic role of planktonic foraminifera and radiolaria. Marine Microbiol. *Food Webs* 7: 31–51.
- Barron, J.A. 1992. Neogene diatom datum levels in the equatorial and North Pacific. In: K. Ishizaki and T. Saito (eds.), Centenary of Japanese Micropaleontology, 413–425. Terra Scientific Publications, Tokyo.
- Barron, J.A. 2003. Planktonic marine diatom record of the past 18 m.y.: appearances and extinctions in the Pacific and Southern Oceans. *Diatom Research* 18: 203–224.
- Barron, J.A. and Baldauf, J.G. 1990. Development of biosiliceous sedimentation in the North Pacific during the Miocene and early Pliocene. *In*: R. Tsuchi (ed.), *Pacific Neogene Events: Their Timing, Nature and Interrelationship*, 43–63. University of Tokyo Press.
- Barron, J.A. and Baldauf, J.G. 1995. Cenozoic marine diatom biostratigraphy and applications to paleoclimatology and paleoceanography. Siliceous Microfossils. *Paleontological Society, Short Courses in Paleontology* 8: 107–118.
- Barton, C.E. and Bloemendal, J. 1986. Paleomagnetism of sediments collected during Leg 90, southwest Pacific. *Initial Reports of Deep Sea Drilling Project* 90: 1273–1316.
- Berger, W.H., Leckie, R.M., Janecek, T.R., Stax, R., and Takayama, T. 1993. Neogene carbonate sedimentation on Ontong Java Plateau: highlights and open questions. *Proceedings of the Ocean Drilling Program, Scientific Results* 130: 711–744.

- Blow, W.H. 1969. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In: P. Bronniman and H.H. Renz (eds.), Proceedings of the First International Conference Planktonic Microfossils (Geneva 1967), 199–242. Bill/Netherlands, Leiden. {not cited in the text}
- Bjørklund, K.R. and Goll, R.M. 1979. Internal skeletal structures of *Collosphaera* and *Trisolenia*: a case of repetitive evolution in the Collosphaeridae (Radiolaria). *Journal of Paleontology* 53: 1293–1326.
- Bukry, D. 1975. Coccolith and silicoflagellate stratigraphy, northwestern Pacific Ocean. *Initial Reports of the Deep Sea Drilling Project* 32: 677–701.
- Cane, M.A. and Molnar, P. 2001. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. *Nature* 411: 157–162. doi:10.1038/35075500 PMid:11346785
- Cannariato, K.G. and Ravelo, A.C. 1997. Pliocene–Pleistocene evolution of eastern tropical Pacific surface water circulation and thermocline depth. *Paleoceanography* 12: 805–820. doi:10.1029/97PA02514
- Casey, R.E. 1993. Radiolaria. In: J.E. Lipps (ed.), Fossil Procaryotes and Protists, 249–284. Blackwell, Boston, Massachusetts.
- Caulet, J.P. 1979. Les dépôts à radiolaires d'age Pliocène supérieur à Pleistocène dans l'océan Indien central: nouvelle zonation biostratigraphique. Mémoires du Museum national d'histoire naturelle, séries C 43: 119–141.
- Caulet, J.P. 1986. Radiolarians from the southwest Pacific. Initial Reports of Deep Sea Drilling Project 90: 835–861.
- Caulet, J.P. 1991. Radiolarians from the Kerguelen Plateau, ODP Leg 119. Proceedings of the Ocean Drilling Program, Scientific Results 119: 513–546.
- Caulet, J.P. and Nigrini, C. 1988. The genus *Pterocorys* (Radiolaria) from the tropical late Neogene of the Indian and Pacific Oceans. *Micropaleontology* 34: 217–235. doi:10.2307/1485753
- Chaisson, W.P. and Leckie, R.M. 1993. High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (western equatorial Pacific). *Proceedings of the Ocean Drilling Program, Scientific Results* 130: 137–168.
- Chaisson, W.P. and Ravelo, A.C. 2000. Pliocene development of east-west hydrographic gradient in the equatorial Pacific. *Paleoceanography* 15: 497–505. doi:10.1029/1999PA000442
- Farrell, J.W., Raffi, I., Janecek, T.R., Murray, D.W., Levitan, M., Dadey, K.A., Emeis, K.-C., Lyle, M., Flores, J.-A., and Hovan, S. 1995. Late Neogene sedimentation patterns in the eastern equatorial Pacific Ocean. *Proceedings of the Ocean Drilling Program, Scientific Results* 138: 717–756.
- Foreman, H.P. 1973. Radiolaria of Leg 10 with systematics and ranges for the families Amphipyndacidae, Artostrobiidae and Theoperidae. *Initial Reports of Deep Sea Drilling Project* 10: 407–474.
- Goll, R.M. 1969. Classification and phylogeny of Cenozoic Trissocyclidae (Radiolaria) in the Pacific and Caribbean Basins. Part II. *Journal of Paleontology* 43: 322–339.
- Haeckel, E. 1887. Report on the Radiolaria collected by H.M.S. Challenger during the years 1873–1876. *Report on the Scientific Results of the Voy*age of H.M.S. Challenger, Zoology 18: 1–1803.
- Haug, G.H. and Tiedemann, R. 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermocline circulation. *Nature* 393: 673–676. {not cited in the text} doi:10.1038/31447
- Hays, J.D. 1970. Stratigraphy and evolutionary trends of Radiolaria in North Pacific deep-sea sediments. *Geological Society of America, Memoir* 126: 185–218.
- Jian, Z., Yu, Y., Li, B., Wang, J., Zhang, X., and Zhou, Z. 2006. Phased evolution of the south-north hydrographic gradient in the South China Sea since the middle Miocene. *Palaeogeography, Palaeoclimatology, Palaeoecology* 230: 251–263. doi:10.1016/j.palaeo.2005.07.018
- Johnson, D.A. and Nigrini, C.A. 1985. Time-transgressive Late Cenozoic radiolarian events of the equatorial Indo-Pacific. *Science* 230: 538–540.
- Johnson, D.A., Schneider, D.A., Nigrini, C.A., Caulet, J.P., and Kent, D.V. 1989. Pliocene–Pleistocene radiolarian events and magnetostratigraphic calibrations for the tropical Indian Ocean. *Marine Micropaleontology* 14: 33–66. doi:10.1016/0377-8398(89)90031-5

- Kamikuri, S. 2009. New late Neogene radiolarian species from the middle to high latitudes of the North Pacific. *Revue de Micropalontogie*. (available online) doi:10.1016/j.revmic.2008.06.005
- Kennett, J.P. 1986. Miocene to early Pliocene oxygen and carbon isotope stratigraphy in the southwest Pacific, Deep Sea Drilling Project Leg 90. *Initial Reports of Deep Sea Drilling Project* 90: 1383–1411.
- Kennett, J.P., Keller, G., and Srinivasan, M.S. 1985. Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region. *Geological Society of America, Memoir* 163: 197–236.
- Kling, S.A. 1973. Radiolaria from the eastern North Pacific, Deep Sea Drilling Project Leg 18. *Initial Reports of Deep Sea Drilling Project* 18: 617–671.
- Kling, S.A. 1979. Vertical distribution of polycystine radiolarians in the central North Pacific. *Marine Micropaleontology* 4: 295–318. doi: 10.1016/0377-8398(79)90022-7
- Kling, S. and Boltovskoy, D. 1995. Radiolarian vertical distribution patterns across the southern California Current. *Deep-Sea Research* 142: 191–231. doi:10.1016/0967-0637(94)00038-T
- Lazarus, D.B. 1992. Antarctic Neogene radiolarians from the Kerguelen Plateau, ODP Legs 119 and 120. *Proceedings of the Ocean Drilling Program, Scientific Results* 120: 785–810.
- Lazarus, D.B. 2002. Environmental control of diversity, evolutionary rates and taxa longevities in Antarctic Neogene Radiolaria. *Palaeontologia Electronia* 32: 1–32.
- Lazarus, D., Scherer, R.P., and Prothero, D.R. 1985. Evolution of the radiolarian species-complex Pterocanium: a preliminary survey. *Jour*nal of Paleontology 59: 183–220.
- Lazarus, D., Spencer-Cervato, C., Pika-Biolzi, M., Beckmann, J.P., Von Salis, K., Hilbrecht, H., and Thierstein, H. 1995. Revised chronology of Neogene DSDP Holes from the world ocean. *Ocean Drilling Program Technical Note* 24: 1–301.
- Li, Q., Li, B., Zhong, G., McGowran, B., Zhou, Z., Wang, J., and Wang, P. 2006. Late Miocene development of the western Pacific warm pool: planktonic foraminifer and oxygen isotopic evidence. *Palaeogeography, Palaeoclimatology, Palaeoecology* 237: 465–482. doi:10.1016/ j.palaeo.2005.12.019
- Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J., and Wilson, J. 2004. Orbital tuning calibrations and conversions for the Neogene Period. *In:* F.M. Gradstein, J.G. Ogg, and A.G. Smith (eds.), *A Geologic Time Scale 2004*, 469–484. Cambridge University Press.
- McGowran, B. 1986. Cainozoic oceanic and climatic events: the Indo-Pacific foraminiferal biostratigraphic record. *Palaeogeography, Palaeoclimatology, Palaeoecology* 55: 247–265. doi:10.1016/0031-0182(86) 90153-7
- Miller, K.G., Wright, J.D., and Fairbanks, R.G. 1991. Unlocking the ice house: Oligocene–Miocene oxygen isotopes, eustacy and margin erosion. *Journal of Geophysical Research* 96: 6829–6848. doi:10.1029/90JB02015
- Mix, A.C., Pisias, N.G., Rugh, W., Wilson, J., Morey, A., and Hagelberg, T.K. 1995. Benthic foraminifer stable isotope record from Site 849 (0–5 Ma): local and global climatic changes. *Proceedings of the Ocean Drilling Program, Scientific Results* 138: 371–388.
- Mix, A.C., Tiedemann, R., Blum, P., Abrantes, F.F., Benway, H., Cacho-Lascorz, I., Chen, M.-T., Delaney, M.L., Flores, J.-A., Giosan, L., Holbourn, A.E., Irino, T., Iwai, M., Joseph, L.H., Kleiven, H.F., Lamy, F., Lurd, S.P., Martinez, P., McManus, J.F., Ninnemann, U.S., Pisias, N.G., Robinson, R.S., Stoner, J.S, Sturn, A., Wara, M.W., and Wei, W. 2003. *Proceedings of the Ocean Drilling Program, Initial Reports 202* [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA.
- Moore, T.C. Jr. 1971. Radiolaria. Initial Reports of Deep Sea Drilling Project 8: 727–775.
- Moore, T.C. Jr. 1972. Mid-Tertiary evolution of the radiolarian genus Calocycletta. *Micropaleontology* 18: 144–152. doi:10.2307/1484991
- Moore, T.C. Jr. 1995. Radiolarian stratigraphy, Leg 138. Proceedings of the Ocean Drilling Program, Scientific Results 138: 191–232.
- Moore, T.C. Jr. 2008. Chert in the Pacific: Biogenic silica and hydrothermal circulation. *Palaeogeography, Palaeoclimatology, Palaeoecology* 261: 87–99. doi:10.1016/j.palaeo.2008.01.009

- Moore, T.C. Jr., Shackleton, N.J., and Pisias, N.G. 1993. Paleoceanography and the diachrony of radiolarian events in the eastern equatorial Pacific. *Paleoceanography* 8: 567–586. doi:10.1029/93PA01328
- Morley, J.J. and Nigrini, C. 1995. Miocene to Pleistocene radiolarian biostratigraphy of North Pacific sites 881, 884, 885, 886 and 887. Proceedings of the Ocean Drilling Program, Scientific Results 145: 55–91.
- Motoyama, I. 1997. Origin and evolution of Cycladophora davisiana Ehrenberg (Radiolaria) in DSDP Site 192, Northwest Pacific. *Marine Micropaleontology* 30: 45–63. doi:10.1016/S0377-8398(96)00047-3
- Nigrini, C. 1967. Radiolaria in pelagic sediments from the Indian and Atlantic Oceans. Bulletin of the Scripps Institution of Oceanography of the University of California 11: 1–125.
- Nigrini, C. 1971. Radiolarian zones in the Quaternary of the equatorial Pacific Ocean. In: B.M. Funnell and W.R. Riedel (eds.), *The Micropalaeontology* of Oceans, 443–461. Cambridge University Press, Cambridge.
- Nigrini, C. 1977. Tropical Cenozoic Artostrobiidae (Radiolaria). Micropaleontology 23: 241–269. doi:10.2307/1485215
- Nigrini, C. and Caulet, J.-P. 1988. The genus *Anthocyrtidium* (Radiolaria) from the tropical late Neogene of the Indian and Pacific Oceans. *Micropaleontology* 34: 341–360. doi:10.2307/1485602
- Nigrini, C. and Lombari, G. 1984. A guide to Miocene Radiolaria. Cushman Foundation Foraminiferal Research, Special Publication 22: S1–S102, N1–N206.
- Nigrini, C. and Moore, T.C., Jr. 1979. A guide to modern Radiolaria. Cushman Foundation Foraminiferal Research, Special Publication 16: S1–S142, N1–N106.
- Nigrini, C., Sanfilippo, A., and Moore, T.C., Jr. 2006. Cenozoic radiolarian biostratigraphy: a magnetobiostratigraphic chronology of Cenozoic sequences from ODP Sites 1218, 1219, and 1220, equatorial Pacific. *Proceedings of the Ocean Drilling Program, Scientific Results* 199: 1–76.
- O'Connor, B. 1997a. New radiolarian from the Oligocene and early Miocene of Northland, New Zealand. *Micropaleontology* 43: 63–100. doi:10.2307/1485923
- O'Connor, B. 1997b. Lower Miocene Radiolaria from Te Koputa Point, Kaipara Harbour, New Zealand. *Micropaleontology* 43: 101–128. doi: 10.2307/1485777
- Ogg, J.G. and Smith, A.G. 2004. The geomagnetic polarity time scale. *In*: F.M. Gradstein, J.G. Ogg, and A.G. Smith (eds.), *A Geologic Time Scale*, 63–86. Cambridge University Press, Cambridge.
- Pujos, A. 1985. Cenozoic nannofossils, central equatorial Pacific, Deep Sea Drilling Project Leg 85. *Initial Reports of Deep Sea Drilling Project* 85: 655–679.
- Raffi, I. and Flores, J-A. 1995. Pleistocene through Miocene calcareous nannofossils from eastern equatorial Pacific Ocean (Leg 138). Proceedings of the Ocean Drilling Program, Scientific Results 138: 233–286.
- Renz, G.W. 1976. The distribution and ecology of Radiolaria in the central Pacific: plankton and surface sediments. *Bulletin of the Scripps Institution of Oceanography of the University of California* 22: 1–267.
- Riedel, W.R. and Sanfilippo, A. 1970. Radiolaria, Leg 4, Deep Sea Drilling Project. *Initial Reports of Deep Sea Drilling Project* 4: 503–575.
- Riedel, W.R. and Sanfilippo, A. 1971. Cenozoic radiolaria from the western tropical Pacific, Leg 7. *Initial Reports of Deep Sea Drilling Project* 7: 1529–1672.
- Riedel, W.R. and Sanfilippo, A. 1978. Stratigraphy and evolution of tropical Cenozoic radiolarians. *Micropaleontology* 24: 61–96. doi:10.2307/ 1485420
- Roth, J.M., Droxler, A.W., and Kameo, K. 2000. The Caribbean carbonate crash at the Middle to Late Miocene transition: linkage to the establish-

ment of the modern global ocean conveyor. *Proceedings of the Ocean Drilling Program, Scientific Results* 165: 249–273.

- Sanfilippo, A. 1990. Origin of the subgenera Cyclampterium, Paralampterium and Sciadiopeplus from Lophocyrtis (Lophocyrtis) (Radiolaria, Theoperidae). Marine Micropaleontology 15: 287–312. doi:10. 1016/ 0377-8398(90)90016-F
- Sanfilippo, A., Burckle, A., Martini, E., and Riedel, W.R. 1973. Radiolarians, diatoms, silicoflagellates and calcareous nannofossils in the Mediterranean Neogene. *Micropaleontology* 19: 209–234. doi:10.2307/1485164
- Sanfilippo, A. and Nigrini, C. 1998. Code numbers for Cenozoic low latitude radiolarian biostratigraphic zones and GPTS conversion tables. Marine *Micropaleontology* 33: 109–156. doi:10.1016/S0377-8398(97)00030-3
- Sanfilippo, A. and Riedel, W.R. 1970. Post-Eocene "closed" theoperid radiolarians. *Micropaleontology* 16: 446–462. doi:10.2307/1485072
- Sanfilippo, A. and Riedel, W.R. 1973. Cenozoic Radiolaria (exclusive of theoperids, artostrobiids and amphipyndacids) from the Gulf of Mexico, DSDP Leg 10. *Initial Reports of Deep Sea Drilling Project* 10: 475–611.
- Sanfilippo, A. and Riedel, W.R. 1974. Radiolaria from the westcentral Indian Ocean and Gulf of Aden, DSDP Leg 24. *Initial Reports of Deep Sea Drilling Project* 24: 997–1035.
- Sanfilippo, A. and Riedel, W.R. 1992. The origin and evolution of Pterocorythidae (Radiolaria): A Cenozoic phylogenetic study. *Micropaleontology* 38: 1–36. doi:10.2307/1485841
- Sanfilippo, A., Westberg-Smith, M.J., and Riedel, W.R. 1985. Cenozoic radiolaria. *In*: H.M. Bolli, J.B. Saunders, and K. Perch-Nielsen (eds.), *Plankton Stratigraphy*, 631–712. Cambridge University Press, Cambridge, UK.
- Schneider, D.A. 1995. Paleomagnetism of some Leg 138 sediments: detailing Miocene magnetostratigraphy. *Proceedings of the Ocean Drilling Program, Scientific Results* 138: 59–72.
- Takayama, T. 1993. Notes on Neogene calcareous nannofossil biostratigraphy of the Ontong Java Plateau and size variations of *Reticulofenestra* coccoliths. *Proceedings of the Ocean Drilling Program, Scientific Results* 130: 179–229.
- Theyer, F., Mayer, L.A., and Thomas, E. 1985. The equatorial Pacific highproductivity belt: elements for a synthesis of deep sea drilling project Leg 85 results. *Initial Reports of Deep Sea Drilling Project* 85: 971–985.
- Thomas, E. 1985. Late Eocene to recent deep-sea benthic foraminifers from the central equatorial Pacific Ocean. *Initial Reports of Deep Sea Drilling Project* 85: 955–970.
- van Andel, T.H., Heath, G.R., and Moore, T.C., Jr. 1975. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: a regional synthesis of Deep Sea Drilling Project data. *Geological Society* of America, Memoir 143: 1–134.
- Vincent, E. and Toumarkine, M. 1995. Data report: Miocene planktonic foraminifers from the eastern equatorial Pacific. *Proceedings of the Ocean Drilling Program, Scientific Results* 138: 895–899.
- Wei, K.-Y. and Kennett, J.P. 1986. Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations. *Paleoceanography* 1: 67–84. doi:10.1029/PA001i001p00067
- Yamashita, H., Takahashi, K., and Fujitani, N. 2002. Zonal and vertical distribution of radiolarians in the western and central equatorial Pacific in January 1999. *Deep-Sea Research II* 49: 2823–2862. doi:10.1016/ S0967-0645(02)00060-7
- Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to Present. *Science* 292: 686–693. doi:10.1126/science.1059412 PMid:11326091

Appendix 1

Species list.

- Acrobotrys tritubus Riedel, 1957: 80, pl. 1: 5. (Fig. 12Q)
- Acrocubus octopylus Haeckel, 1887: 993, pl. 82: fig. 9. (Fig. 12H)
- Amphirhopalum ypsilon Haeckel, 1887; Nigrini 1967: 35, pl. 3: 3a–d. (Fig. 8G)
- Anthocyrtidium angulare Nigrini, 1971; Nigrini and Caulet 1988: 343, pl. 1: 1, 2. (Fig. 11C)
- Anthocyrtidium ehrenbergi (Stöhr, 1880); Nigrini and Caulet 1988: 345, pl. 1: 3, 4. (Fig. 11D)
- Anthocyrtidium jenghisi Streeter, 1988; Nigrini and Caulet 1988: 350, pl. 1: 9–12. (Fig. 11A)
- Anthocyrtidium nosicaae Caulet, 1979; Nigrini and Caulet 1988: 351, pl. 1: 15–17. (Fig. 11N)
- Anthocyrtidium ophirense (Ehrenberg, 1872); Nigrini and Moore 1979: N67, pl. 25: 1. (Fig. 11B)
- Anthocyrtidium pliocenica (Seguenza, 1880); Nigrini and Caulet 1988: 355, pl. 2: 5, 6. (Fig. 11I)
- Anthocyrtidium zanguebaricum (Ehrenberg, 1872); Nigrini and Caulet 1988: 355, pl. 2: 11. (Fig. 11H)
- Axoprunum stauraxonium Haeckel, 1887; Nigrini and Moore 1979: N57, pl. 7: 2, 3. (Fig. 9P)
- Botryostrobus aquilonaris (Bailey, 1856); Nigrini 1977: 246, pl. 1: 1. (Fig. 10F)
- Botryostrobus auritus/australis (Ehrenberg, 1884) group; Nigrini 1977: 246, pl. 1: 2–5. (Fig. 10D)
- *Botryostrobus bramlettei* (Campbell and Clark, 1944); Nigrini 1977: 248, pl. 1: 7, 8. (Fig. 10G)
- *Botryostrobus miralestensis* (Campbell and Clark, 1944); Nigrini 1977: 249, pl. 1: (Fig. 10B)
- Calocycletta (Calocyclior) caepa Moore, 1972: 150, pl. 2: 4–7; Sanfilippo and Riedel 1992: 31. (Fig. 14E)
- *Calocycletta (Calocycletta) cladara* Sanfilippo and Riedel, 1992: 30, pl. 2: 12–16. (Fig. 14D)
- Calocycletta (Calocyclissima) costata (Riedel, 1959); Nigrini and Lombari 1984: N155, pl. 28: 2; Sanfilippo and Riedel 1992: 30. (Fig. 14A)
- Calocycletta (Calocycletta) robusta Moore, 1971: 743, pl. 10: 5, 6; Sanfilippo and Riedel 1992: 28. (Fig. 14B)
- Calocycletta (Calocycletta) virginis (Haeckel, 1887); Nigrini and Lombari 1984: N161, pl. 29: 2; Sanfilippo and Riedel 1992: 28. (Fig. 14C)
- *Carpocanium rubyae* O'Connor, 1997b: 107, pl. 2: 1–4, pl. 5: 5–8. (Fig. 10V)
- Carpocanopsis bramlettei Riedel and Sanfilippo, 1971; Nigrini and Lombari 1984: N85, pl. 21: 3. (Fig. 10W)
- Carpocanopsis cingulata Riedel and Sanfilippo, 1971; Nigrini and Lombari 1984: N87, pl. 21: 4. (Fig. 10AB)
- Carpocanopsis favosa (Haeckel, 1887); Nigrini and Lombari 1984: N91, pl. 21: 6a-c. (Fig. 10AF)
- *Collosphaera brattstroemi* Bjørklund and Goll, 1979: 1315, pl. 3: 10–26, pl. 4: 13–16. (Fig. 8I)
- Collosphaera tuberosa Haeckel, 1887; Nigrini 1971: 445, pl. 34.1: 1. (Fig. 9N)
- *Cycladophora davisiana* Ehrenberg, 1861; Motoyama 1997: 60, pl. 1: 4–10. (Fig. 12K)
- Cyrtocapsella cornuta Haeckel, 1887; Nigrini and Lombari 1984: N101, pl. 23: 1. (Fig. 10X)
- *Cyrtocapsella japonica* (Nakaseko, 1963); Nigrini and Lombari 1984: N107, pl. 23: 4a-c. (Fig. 10Y)
- *Cyrtocapsella tetrapera* (Haeckel, 1887); Nigrini and Lombari 1984: N109, pl. 23: 5. (Fig. 10Z)

- Dendrospyris bursa Sanfilippo and Riedel, 1973; Nigrini and Lombari 1984: N19, pl. 16: 1a–f. (Fig. 14G)
- Diartus hughesi (Campbell and Clark, 1944); Nigrini and Lombari 1984: S43, pl. 6: 2. (Fig. 9I)
- Diartus petterssoni (Riedel and Sanfilippo, 1970); Nigrini and Lombari 1984: S41, pl. 6: 1. (Fig. 9J)
- Dictyocoryne ontongensis Riedel and Sanfilippo, 1971: 1588, pl. 1E: 1, 2, pl. 4: 9–11. (Fig. 8F)
- *Dictyophimus crisiae* Ehrenberg, 1854: Nigrini and Moore 1979: N33, pl. 22: 1a, b. (Fig. 12C)
- Dictyophimus splendens (Campbell and Clark, 1944); Morley and Nigrini 1995: 79, pl. 7: 3, 4. (Fig. 12F)
- Didymocyrtis antepenultima (Riedel and Sanfilippo, 1970); Nigrini and Lombari 1984: S55, pl. 7: 2a, b. (Fig. 9F)
- *Didymocyrtis avita* (Riedel, 1953); Sanfilippo et al. 1985: 657, figs. 8.8a, b. (Fig. 9K)
- Didymocyrtis bassanii (Carnevale, 1908); Nigrini et al. 2006: 32, pl. P1: 5. (Fig. 9H)
- Didymocyrtis laticonus (Riedel, 1959); Nigrini and Lombari 1984: S53, pl. 7: 1a-c. (Fig. 9E)
- *Didymocyrtis mammifera* (Haeckel, 1887); Nigrini and Lombari 1984: S51, pl. 6: 6. (Fig. 9D)
- *Didymocyrtis penultima* (Riedel, 1957); Nigrini and Lombari 1984: S57, pl. 7: 3a–c. (Fig. 9G)
- *Didymocyrtis prismatica* (Haeckel, 1887); Nigrini and Lombari 1984: S45, pl. 6: 3a, b. (Fig. 9A)
- *Didymocyrtis tetrathalamus* (Haeckel, 1887); Sanfilippo et al. 1985: 659, figs. 8.9a, b. (Fig. 9L)
- *Didymocyrtis tubaria* (Haeckel, 1887); Nigrini and Lombari 1984: S47, pl. 6: 4. (Fig. 9B)
- *Didymocyrtis violina* (Haeckel, 1887); Nigrini and Lombari 1984: S49, pl. 6: 5. (Fig. 9C)
- Dorcadospyris alata (Riedel, 1959); Sanfilippo et al. 1985: 661, fig. 10.7. (Fig. 13F)
- Dorcadospyris dentata Haeckel, 1887; Nigrini and Lombari 1984: N29, pl. 17: 2. (Fig. 13G)
- *Eucyrtidium diaphanes* Sanfilippo and Riedel, 1973; Sanfilippo et al. 1973; 221, pl. 5: 12–14. (Fig. 10M)
- *Giraffospyris toxaria* (Haeckel, 1887); Goll 1969: 335, pl. 56: 1, 2, 4, 7, text-fig. 2. (Fig. 12P)
- Lamprocyclas maritalis polypora Nigrini, 1967; Nigrini and Moore 1979: N77, pl. 25: 5. (Fig. 11J)
- Lamprocyrtis heteroporos (Hays, 1965); Kling 1973: 639, pl. 5: 19–21, pl. 15: 6. (Fig. 11G)
- Lamprocyrtis neoheteroporos Kling, 1973: 639, pl. 5: 17, pl. 15: 4, 5. (Fig. 11F)
- Lamprocyrtis nigriniae (Caulet, 1971); Nigrini and Moore 1979: N81, pl. 25: 7. (Fig. 11E)
- *Larcospira moschkovskii* Kruglikova, 1978; Nigrini and Lombari 1984: S91, pl. 13: 2a, b. (Fig. 8E)
- Larcospira quadrangula Haeckel, 1887 group; Nigrini and Lombari 1984: S93, pl. 13: 3a-c. (Fig. 8D)
- *Liriospyris parkerae* Riedel and Sanfilippo, 1971: 1590, pl. 2C: 15, pl. 5: 4. (Fig. 12E)
- *Liriospyris reticulata* Ehrenberg, 1872; Nigrini and Moore 1979: N13, pl. 19: 4a, b. (Fig. 14F)
- Lithelius klingi Kamikuri, 2009 (Fig. 9R)
- *Lithopera bacca* Ehrenberg, 1872; Sanfilippo and Riedel 1970: 455, pl. 1: 29. (Fig. 10AD)

- *Lithopera neotera* Sanfilippo and Riedel, 1970: 454, pl. 1: 24–26, 28. (Fig. 10AC)
- Lithopera renzae Sanfilippo and Riedel, 1970: 454, pl. 1: 21–23, 27. (Fig. 10T)
- Lithopera thornburgi Sanfilippo and Riedel, 1970: 455, pl. 2: 4–6. (Fig. 10AE)
- Lophocyrtis (Cyclampterium) brachythorax (Sanfilippo and Riedel, 1970); Sanfilippo1990: 304, pl. 4: 4–6. (Fig. 13D)
- Lophocyrtis (Cyclampterium) leptetrum (Sanfilippo and Riedel, 1970); Sanfilippo 1990: 306, pl. 2: 6–9. (Fig. 13A)
- Lophocyrtis (Cyclampterium) neatum (Sanfilippo and Riedel, 1970): Sanfilippo 1990: 307, pl. IV: 1–3. (Fig. 13B)
- Lophocyrtis (Cyclampterium) tanythorax (Sanfilippo and Riedel, 1970); Sanfilippo 1990: 307, pl. 4: 7–10. (Fig. 13C)
- *Lychnodictyum audax* Riedel, 1953; Sanfilippo and Riedel 1974: 1022, pl. 2: 8. (Fig. 12A)
- Nephrospyris renilla Haeckel, 1887: 1101, pl. 90: 9. (Fig. 13E)
- Periphaena decora Ehrenberg, 1873; Sanfilippo and Riedel 1973: 523, pl. 8: 8–10. (Fig. 9M)
- Phormostichoartus corbula (Harting, 1863); Nigrini 1977: 252, pl. 1: 10. (Fig. 10K)
- Phormostichoartus doliolum (Riedel and Sanfilippo, 1971); Nigrini 1977: 252, pl. 1: 14. (Fig. 10I)
- Phormostichoartus fistula Nigrini, 1977: 253, pl. 1: 11–13. (Fig. 10C)
- Phormostichoartus marylandicus (Martin, 1904); Nigrini 1977: 253, pl. 2: 1–4. (Fig. 10H)
- Pterocanium korotnevi (Dogiel, 1952); Nigrini and Moore 1979: N39, pl. 23: 1a, b. (Fig. 12G)
- Pterocanium praetextum eucolpum Haeckel, 1887; Nigrini and Moore 1979: N43, pl. 23: 3. (Fig. 12O)
- Pterocanium praetextum praetextum (Ehrenberg, 1872); Nigrini and Moore 1979: N41, pl. 23: 2. (Fig. 12N)
- *Pterocanium prismatium* Riedel, 1957; Lazarus et al. 1985: 200, figs. 17.1–17.4. (Fig. 12B)
- Pterocorys campanula Haeckel, 1887; Caulet and Nigrini 1988: 226, pl. 1: 2–5. (Fig. 11P)
- *Pterocorys hertwigii* (Haeckel, 1887); Caulet and Nigrini 1988: 229, pl. 1: 11, 12. (Fig. 11Q)
- Pterocorys macroceras (Popofsky, 1913); Caulet and Nigrini 1988: 230, pl. 2: 1–5. (Fig. 11O)
- Pterocorys minythorax (Nigrini, 1968); Caulet and Nigrini 1988: 231, pl. 2: 6. (Fig. 11M)
- *Pterocorys zancleus* (Müller, 1855); Caulet and Nigrini 1988: 232, pl. 2: 10, 11. (Fig. 11R)

- Siphostichartus corona (Haeckel, 1887); Nigrini 1977: 257, pl. 2: 5–7. (Fig. 10J)
- Solenosphaera omnitubus omnitubus Riedel and Sanfilippo, 1971; Nigrini and Lombari 1984: S7, pl. 1: 4. (Fig. 9T)
- Solenosphaera omnitubus procera Sanfilippo and Riedel, 1974: 1024, pl. 1: 2–5. (Fig. 9S)
- Spirocyrtis gyroscalaris Nigrini, 1977: 258, pl. 2: 10, 11. (Fig. 10E)
- *Spirocyrtis scalaris* Haeckel, 1887; Nigrini 1977: 259, pl. 2: 12, 13. (Fig. 10A)
- Spirocyrtis subtilis Petrushevskaya, 1972; Nigrini 1977: 260, pl. 3: 3. (Fig. 10L)
- Spongaster berminghami (Campbell and Clark, 1944); Nigrini and Lombari 1984: S63, pl. 9: 1a, b. (Fig. 8A)
- Spongaster pentas Riedel and Sanfilippo, 1970: 523, pl. 15: 3. (Fig. 8B)
- Spongaster tetras tetras Ehrenberg, 1860; Riedel and Sanfilippo 1978:
 - 74, pl. 2: 2, 3. (Fig. 8C)
- Spongodiscus klingi Caulet, 1986: 849, pl. 2: 2, 3. (Fig. 8H)
- Stichocorys armata Haeckel, 1887; Riedel and Sanfilippo 1971: 1595, pl. 2E: 13–15. (Fig. 10O)
- Stichocorys delmontensis (Campbell and Clark, 1944); Nigrini and Lombari 1984: N129, pl. 25: 4. (Fig. 10Q)
- Stichocorys johnsoni Caulet, 1986: 851, pl. 6: 5, 6. (Fig. 10R)
- Stichocorys peregrina (Riedel, 1953); Nigrini and Lombari 1984: N133, pl. 25: 6. (Fig. 10P)
- Stichocorys wolffii Haeckel, 1887; Nigrini and Lombari 1984: N135, pl. 25: 7. (Fig. 10N)
- Stylatractus universus Hays, 1970: 215, pl. 1: 1, 2. (Fig. 9O)
- Theocorythium trachelium dianae (Haeckel, 1887); Nigrini and Moore 1979: N97, pl. 26: 3a, b. (Fig. 11L)
- *Theocorythium trachelium trachelium* (Ehrenberg, 1872); Nigrini and Moore 1979: N93, pl. 26: 2. (Fig. 11K)

Theocorythium vetulum Nigrini, 1971: 447, pl. 34.1: 6a, b. (Fig. 11S)

Tholospyris anthopora (Haeckel, 1887); Nigrini and Lombari 1984: N69, pl. 20: 1. (Fig. 12I)

- Tholospyris kantiana (Haeckel, 1887); Nigrini and Lombari 1984: N71, pl. 20: 2a-c. (Fig. 12L)
- *Trisolenia megalactis costlowi* Bjørklund and Goll, 1979: 1322, pl. 4: 5, 6, 9–12, pl. 6: 1–11. (Fig. 8K)
- *Trisolenia megalactis megalactis* Ehrenberg, 1872; Bjørklund and Goll 1979: 1321, pl. 5: 1–21. (Fig. 8J)
- *Valkyria pukapuka* O'Connor, 1997a: 74, pl. 2: 15, 16, pl. 3: 1, 2, pl. 7: 11, 12, pl. 8: 1, 2. (Fig. 12D)