" BioOne COMPLETE

MOLECULAR EPIDEMIOLOGY OF TERRESTRIAL
RABIES IN THE FORMER SOVIET UNION

Authors: Kuzmin, lvan V., Botvinkin, Alexandr D., McElhinney, Lorraine
M., Smith, Jean S., Orciari, Lillian A., et al.

Source: Journal of Wildlife Diseases, 40(4) : 617-631

Published By: Wildlife Disease Association
URL: https://doi.org/10.7589/0090-3558-40.4.617

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles
in the biological, ecological, and environmental sciences published by nonprofit societies, associations,
museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use.
Commercial inquiries or rights and permissions requests should be directed to the individual publisher as
copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit
publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to
critical research.

Downloaded From: https://complete.bioone.org/journals/Journal-of-Wildlife-Diseases on 07 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



Journal of Wildlife Diseases, 40(4), 2004, pp. 617-631
© Wildlife Disease Association 2004

MOLECULAR EPIDEMIOLOGY OF TERRESTRIAL RABIES IN THE
FORMER SOVIET UNION

Ivan V. Kuzmin,*? Alexandr D. Botvinkin,® Lorraine M. McElhinney,* Jean S. Smith,? Lillian
A. Orciari,? Gareth J. Hughes,? Anthony R. Fooks,* and Charles E. Rupprecht?®

1 Rabies Group, Institute for Natural Foci Infections, Prospekt Mira, 7, Omsk, 644080 Russia

2 Rabies Section, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, Georgia 30333, USA

3 Epidemiology Chair, State Medical University, Krasnogo Vosstania, 1, Irkutsk 664003, Russia

4 Rabies Research and Diagnostic Group, Veterinary Laboratories Agency, Weybridge, Addlestone, Surrey KT15
3NB, UK

5 Corresponding author (email: cyr5@cdc.gov)

ABSTRACT:  Fifty-five rabies virus isolates originating from different regions of the former Soviet
Union (FSU) were compared with isolates originating from Eurasia, Africa, and North America
according to complete or partial nucleoprotein (N) gene sequences. The FSU isolates formed
five distinct groups. Group A represented viruses originating from the Arctic, which were similar
to viruses from Alaska and Canada. Group B consisted of “Arctic-like” viruses, originating from
the south of East Siberia and the Far East. Group C consisted of viruses circulating in the steppe
and forest-steppe territories from the European part of Russia to Tuva and in Kazakhstan. These
three phylogenetic groups were clearly different from the European cluster. Viruses of group D
circulate near the western border of Russia. Their phylogenetic position is intermediate between
group C and the European cluster. Group E consisted of viruses originating from the north-
western part of Russia and comprised a “northeastern Europe” group described earlier from the
Baltic region. According to surveillance data, a specific host can be defined clearly only for group
A (arctic fox; Alopex lagopus) and for the Far Eastern part of the group B distribution area
(raccoon dog; Nyctereutes procyonoides). For other territories and rabies virus variants, the red
fox (Vulpes vulpes) is the main virus reservoir. However, the steppe fox (Vulpes corsac), wolf
(Canis lupus), and raccoon dog are also involved in virus circulation, depending on host popu-
lation density. These molecular data, joined with surveillance information, demonstrate that the
current fox rabies epizootic in the territory of the FSU developed independently of central and
western Europe. No evidence of positive selection was found in the N genes of the isolates. In
the glycoprotein gene, evidence of positive selection was strongly suggested in codons 156, 160,
and 183. At these sites, no link between amino acid substitutions and phylogenetic placement or
specific host species was detected.
Key words:  Epidemiology, former Soviet Union, rabies, phylogenetics, Russia.

INTRODUCTION

Rabies is enzootic in Eurasia. The Asian
tropics are affected mainly by urban dog
rabies, and thousands of human cases are
reported there annually (Ahuja et al.,
1985; Wilde, 1997). In Europe, urban dog
rabies has been largely eliminated. The
main wildlife reservoir is the red fox (Vul-
pes vulpes), with only sporadic human cas-
es registered in European countries over
the last few decades, mainly because of
successfully implemented oral vaccination
programs and advanced human postexpo-
sure prophylaxis (Toma and Andral, 1977;
Bourhy et al., 1999). In the former Soviet
Union (FSU), rabies is enzootic from the
western borders to the Far East, but the
affected areas are discontinuous (Fig. 1).

General epidemiologic patterns of the dis-
ease, surveillance data, and veterinary rec-
ords suggest that rabies is maintained in
Russia by wild canids. During the last sev-
eral decades, only a few local dog epizo-
otics have occurred sporadically in some
territories. Wildlife rabies predominates
also in the Ukraine, Belarus, Moldova, and
the Baltic states. Dog rabies is predomi-
nant in the central Asiatic states of the
FSU, especially in Uzbekistan and Tajikis-
tan and in the Caucasus (Cherkasskiy,
1985; Selimov, 1998; Vedernikov et al.,
2002).

Certain wild Carnivora species appear
to maintain rabies virus circulation in dif-
ferent regions. Arctic rabies covers the
tundra and tundra-forest zones in the
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FIGURE 1. Map of the former Soviet Union
showing the terrestrial rabies enzootic region (shad-
ed) and distribution of different phylogenetic groups
of rabies virus (A—E). State designation: 1 = Estonia;
2 = Lithuania; 3 = Latvia; 4 = Moldova; 5 = Geor-
gia; 6 = Armenia; 7 = Azerbaijan; 8 = Tajikistan; 9
= Kyrgyzstan. RV305, RV307, and RV308 =
grouped isolates from Georgia.

un-

north, and this enzootic region matches
the area of distribution and regular migra-
tions of the arctic fox (Alopex lagopus). A
wide zone of conifer taiga forests lying to
the south of the tundra-forest zone is con-
sidered largely free of rabies. In general,
this region is not supportive of wild canids,
and their density appears too low to main-
tain active virus circulation. In the forest-
steppe and steppe zones, lying to the south
of the taiga, rabies is maintained primarily
by the red fox. The raccoon dog (Nycter-
eutes procyonoides) is involved in virus cir-
culation in the Far East and parts of Eu-
rope. The steppe fox (Vulpes corsac) and
jackal (Canis aureus) participate in rabies
virus circulation in the steppe and desert
territories. The wolf (Canis lupus) histor-
ically caused rabies outbreaks in different
areas. These six canid species were includ-
ed in the group of likely principal hosts
and vectors of rabies virus in Russia and
the FSU. Mustelids and other carnivores
were considered as additional or occasion-
al hosts (Kantorovich and Reshetnikov,
1968; Selimov, 1978; Malkov and Griba-
nova, 1980). Rodents and other terrestrial
mammals have been diagnosed rabid, but
only very rarely (Selimov, 1998; Vederni-
kov et al., 2002).

At least nine different antigenic variants

of rabies virus were detected in the FSU
using antinucleocapsid monoclonal anti-
bodies (N-MAbs). A limited relationship of
the antigenic patterns to geographic origin
and terrestrial host species of the isolate
was demonstrated (Botvinkin et al., 1990;
Selimov et al., 1994).

Few isolates originating from Russia and
states of the FSU were available for ge-
netic comparison. Comparative analyses of
some of these isolates from the FSU have
been published, but not with specific at-
tention to the FSU (Kissi et al., 1995;
McElhinney et al., 2001; Nadin-Davis et
al., 2002; Johnson et al., 2003). In this
study, we performed phylogenetic analysis
of 55 terrestrial rabies virus isolates, orig-
inating from different geographic locations
of Russia and some surrounding states of
the FSU, and compared them with isolates
originating from FEurasia, Africa, and
North America. Our overall objective was
to draw inferences into the origins, reser-
voirs, and regional epidemiology of the
disease, as well as to search for compara-
tive evidence of selection among viral
genes.

MATERIALS AND METHODS

All viruses were isolated from rabid animals
by intracerebral mouse inoculation (Koprowski,
1996) and were used after a minimum of one
to seven mouse brain passages (Table 1). The
samples were initially identified by the direct
fluorescent antibody test (Dean et al., 1996) or
the rapid rabies enzyme immunosorbent assay
(Bourhy and Perrin, 1996).

Total RNA was extracted from infected
mouse brains with TRI1zol® (Gibco-BRL, Inc.,
Gaithersburg, Maryland, USA) according to the
manufacturer’s recommendations. Reverse
transcriptase polymerase chain reaction (RT-
PCR) was performed with primer sets to the
nucleoprotein (N) and glycoprotein (G) genes
and sequenced as described elsewhere (Tordo
et al., 1996; Johnson et al., 2003).

Two data sets were used for the phylogenetic
analysis. The first set (n=74, including 39 iso-
lates from the FSU) consisted of 1,350 nucle-
otide (nt) sequences of the entire N gene (po-
sitions 71-1,420 according to the Pasteur virus
[PV] genome; GenBank accession number
M13215). The second set (n=92, including 55
isolates from the FSU) consisted of 405 nt se-
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quences of the N gene (positions 71-475). Phy-
logenetic analysis was performed by the neigh-
bor-joining (N]J) method from the MEGA com-
puter program, version 2.1 (Kumar et al.,
2001). Maximum likelihood (ML) analysis, with
empirical base frequencies, gamma distribution
of rate variation among sites, and the hidden
Markov model of inferring different rates of
evolution at different sites, was performed by
the method implemented in PHYLIP, version
3.6-alpha (Felsenstein, 1993). Initially, the data
set was subjected to multiple replications in the
SEQBOOT module. The obtained file was pro-
cessed subsequently in the DNAPARS, PROT-
PARS, or DNAML modules, respectively, and
finally, the consensus tree was generated with
the CONSENSE module. Bootstrap values
were determined for 1,000 replicates by the NJ
method and for 100 replicates by the ML
method.

Three data sets were used for positive selec-
tion analysis: 1) entire N gene sequences
(n=67); 2) 852 nt G gene sequences (n=36;
284 codons, positions 3,408—4,259); and 3) 251
nt G gene sequences (n=52; 117 codons, po-
sitions 4,009-4,259). Positive selection analysis
was performed with various models of codon
substitution (Yang et al., 2000) implemented in
the CODEML program of the PAML package
(Yang, 1997). Various ML models are applied
with varying constraints on the values of syn-
onymous (dg) and nonsynonymous (dy) substi-
tution rates, and their ratio (w). Models allow-
ing for positive selection (i.e., ®>1) are nested
within models that do not allow for positive se-
lection. This allows the significance of the fit
for positive selection models to be tested by the
likelihood ratio test. Positive selection is in-
ferred if the positive selection model has a sig-
nificantly higher likelihood than the null model,
and a value of w>1 is estimated. If evidence of
positive selection is suggested, Bayesian meth-
ods are used to identify which individual co-
dons fall into the w>1 class.

Sequence alignments were trimmed to in-
clude only complete nonstop codons, and iden-
tical sequences were removed. For each set of
sequences, a ML tree was generated with
PAUP* 4.0, beta 10 (Swofford, 2000) by a heu-
ristic search incorporating tree bisection-re-
combination (TBR) branch swapping. This tree
was then used for positive selection analysis. In
each case, the model of nucleotide substitution
was selected with Modeltest (Posada and Cran-
dall, 1998). Model testing with CODEML was
performed as described by Woelk et al. (2002).
Phylogenetic trees used in this analysis are
available from the authors on request.

JOURNAL OF WILDLIFE DISEASES, VOL. 40, NO. 4, OCTOBER 2004

RESULTS

Phylogenetic analysis of the entire N
gene sequences, performed by either ML
or NJ methods, revealed trees of an iden-
tical topology (Fig. 2). The sequences were
subdivided into two main groups. The first
group consisted of two tropical dog viruses
from Thailand (8738THA) and India
(AF374721) and might be used as an out-
group to the second group, which consist-
ed of all other sequences. The second
group was further subdivided into two dis-
tinct clusters. One of them (cluster I)
joined Arctic viruses originating from Eur-
asia and North America and two branches
of “Arctic-like” viruses, originating from
India, Pakistan, East Siberia, and the Far
East (bootstrap support of 100%). The
second (cluster II) contained viruses orig-
inating from different territories of Eurasia
and Africa (bootstrap support of 99%). In-
cluded in this cluster were representatives
of all European groups previously identi-
fied (Bourhy et al., 1999) and other viruses
of Old World origin (Kissi et al., 1995;
McElhinney et al., 2001). The topology of
the tree for all these sequences matched
that of earlier reports.

Isolates originating from the FSU could
be clearly subdivided into five main groups
on the basis of phylogenetic placement.
Diversity varied primarily with geographic
location rather than host species, even
when a number of isolates from different
species were available for comparison.
Group A consisted of isolates originating
from the Arctic zone of Eurasia and North
America. This cluster was further split into
two clades, and the Canadian isolate “1991
fox 6199 was placed ancestral to both. No
difference was registered among these
Arctic viruses with regard to continent of
origin or host species, with one exception:
the isolate RV250, obtained from a rodent,
Citellus undulatus, in the south of East Si-
beria, distant from the Arctic zone.

Group B consisted of Arctic-like viruses
originating from East Siberia and the Far
East, including the Japanese isolate, Ko-
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FIGURE 2. Neighbor joining phylogenetic tree of
74 rabies virus isolates according to the entire nucle-
oprotein gene. Genbank accession numbers are given
when strain names are unavailable. The tree is rooted
with the isolates AF374721 and 8738THA. Bootstrap
values are presented for key nodes, and branch
lengths are drawn to scale. Isolates from the former
Soviet Union are italicized. Abbreviations for the
main phylogenetic groups from the former Soviet
Union (A-E) are described in the text, as well as big
clusters (I and II); abbreviations for earlier described
European groups (NEE, CE, EE, WE) are given ac-
cording to Bourhy et al. (1999).

matsugawa. Another Arctic-like group in-
cluded viruses originating from India and
Pakistan (isolates RV61, 196p, and 277p).
Group C consisted of viruses originating
from the steppe and forest-steppe territo-
ries from the European part of Russia to
the Altai and Sayan mountains. Differenc-
es were well supported from the other
group of viruses, which joined isolates
from different parts of Europe (Kissi et al.,
1995; Bourhy et al., 1999), with bootstrap
support of 100%.

Group D joined viruses originating from
the center of the European part of Russia
(RV234, RV299, and RV262) and an isolate
from Hungary, 9215HON, which was not
related to any clade from an earlier study
(Bourhy et al., 1999). This group was
linked to a cluster of European viruses
with limited bootstrap support (52%).
Group E consisted of viruses isolated in
the northwestern part of Russia. Together
with isolates from Estonia, these viruses
belonged to the earlier described “north-
eastern Europe” group (Bourhy et al.,
1999). The isolate RV308 from Georgia
was not classified into any cluster.

When the extended set of 405 nt N gene
sequences was analyzed, tree topology was
identical. All virus groups determined for
the entire N gene remained and were ex-
tended with the new representatives,
whereas bootstrap support was reduced
(Fig. 3). In this tree, the newly incorpo-
rated isolates RV305 from Georgia and
RV1133 from Turkey were joined to isolate
RV308 and formed a solid group with sub-
stantial bootstrap support. Another newly
incorporated isolate from Georgia, RV307,
was joined to the cluster of Middle East
viruses.

No evidence of positive selection was
found in any set of N gene sequences. In
a number of cases, the null model was sig-
nificantly less likely than one that allowed
positive selection, but in no case was w>1.
The results of positive selection analysis
for G gene sequences are shown in Table
2. For both G gene data sets, a number of
null models were less favored than models
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FIGURE 3. Neighbor joining phylogenetic tree of
92 rabies virus isolates according to 405 nucleotide
fragment of the nucleoprotein gene. For explanations
see legend to Figure 2.

that allowed for positive selection. In both
cases, this includes the most precise model
(MS8) for detecting positive selection (An-
isimova et al., 2002). For the sequence set
covering the larger area of the G gene
(data set 2), two positive selection models
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(M3 and MS8) selected three codons (156,
160, 183) as having a ®w=2.2709 and
1.7427, respectively. For the smaller se-
quence set (data set 3), positive selection
was inferred at just one codon (183) by M3
and MS, with ®=2.3301 and 2.3266, re-
spectively.

DISCUSSION

Geographic distribution of the genetic
variants of rabies virus is presented in Fig-
ure 1. The isolates belonging to groups A—
E originated from distinct geographic re-
gions. Arctic rabies is distributed in a cir-
cumpolar fashion. Absence of significant
distinctions between North American and
Siberian Arctic rabies virus isolates sug-
gests that the virus population is inter-
mixed. This is in concordance with the re-
sults of N-MAbs application (Botvinkin et
al., 1990) and previous genetic data (Kissi
et al., 1995). Our set of sequences was lim-
ited, and we could not make a species
comparison. However, surveillance data
suggests that the arctic fox is the principal
host of rabies virus in the Arctic region of
Russia. Rare human rabies cases caused by
arctic foxes, dogs, and wolves were de-
scribed in northern Russian (Kantorovich
and Reshetnikov, 1968; Botvinkin et al.,
1995; Kuzmin, 1999). Additional attention
should be paid to isolate RV250. The iso-
lation point of this virus is separated from
the native area of Arctic rabies virus cir-
culation by at least 1,000 km of the “ra-
bies-free” zone of the taiga forests. Fur-
ther active surveillance of C. undulatus
and another rodent species did not bring
positive results. According to antigenic
typing, this isolate reacted with N-MAb P-
41, like the Arctic rabies viruses, but did
not react with some other N-MAbs, being
different from all other rabies viruses
(n>300) available for comparison (Bot-
vinkin et al., 1990). Isolates with similar
antigenic patterns were described from
Thailand and Madagascar (Sureau et al.,
1983). We have no satisfactory explanation
for the origin of this virus.

Circulation of group B viruses in the
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TABLE 2.. Results of positive selection analysis
Data set*  Model" P values® od pe Codons!

2 M2 <0.0001 (MO), <0.0001 (M1), 0.4161 (M3) 0.037 0.734
M3 <0.0001 (M0), <0.0001 (M1), 0.4161 (M2) 2.271 0.006 156, 160, 183
MS <0.0001 (M7) 1.743 0.011 156, 160, 183

3 M2 <0.0001 (MO0), 0.3991 (M1), 0.4161 (M3) 3.583 0.006
M3 <0.0001 (M0), <0.0001 (M1), <0.0001 (M2) 2.330 0.009 183
MS 0.0006 (M7) 2.327 0.009 183

4 Data set 2 = long glycoprotein (G) gene (n = 36; 284 codons); data set 3 = short G gene (n = 52; 117 codons).
b Refers to the model allowing for positive selection implemented with the CODEML package. Parameters for all models

are available from the authors on request.

¢ Significance of the likelihood ratio test performed as described by Woelk et al. (2002). Bold values indicate significant
improvement on the null hypothesis by a model allowing for positive selection.
d Estimated value of the ratio of synonymous (dg) and nonsynonymous (dy) substitution rates.

¢ Proportion of codons estimated to fall into the category of w.

[Position of selected codons along the rabies virus glycoprotein gene.

Russian Far East is currently maintained
by raccoon dogs, red foxes, and wolves.
According to available surveillance data,
rabid raccoon dogs have been identified in
the Far East since 1931 (Mirolubov, 1934),
and these animals have been known as
sources of human rabies since at least
1951. During the outbreak of 1979-80, ac-
tive surveillance demonstrated rabies virus
in 13.5%4.6% of raccoon dogs and in
3.5+2.0% of red foxes trapped randomly
(Botvinkin et al., 1981). In an experimental
study, susceptibility of raccoon dogs to in-
digenous rabies virus was significantly
greater than susceptibility of foxes. During
the clinical period, the animals were agi-
tated and aggressive, and the virus was de-
tected in their salivary glands more fre-
quently than in the salivary glands of foxes
(Botvinkin et al., 1983). These data pro-
vide an indirect suggestion that the rac-
coon dog might be the principal host of
this rabies virus variant. However, about
80% of human rabies cases were caused
by dogs, with raccoon dogs the next most
important source. Only one human case
was reported after a red fox bite (Savitsky
et al., 1981; Yanovich, 2003).

In the Russian Far East, the rabies en-
zootic region is limited and fragmented. It
lies in the wet lowlands along the Amur
and Ussuri rivers. Most probably, a major
part of the enzootic region is situated in
the northern provinces of China. Unfor-

tunately, we had no samples from this area
to make a comparison. The Komatsugawa
virus, isolated from a dog in Tokyo shortly
after the end of World War II (Ito et al.,
1999), belonged to the same group.

Another lineage of group B (isolates
248c and 304c) originated from a local ra-
bies focus situated in the highland steppes
of East Siberia near the border with Mon-
golia (Transbaikal region). During the first
half of the 20th century, dogs and wolves
were known as the main reservoirs and
vectors of rabies virus in this area. Later,
from 1950 to 1977, wolves were a source
of 8.7% of human rabies cases and do-
mestic animals (mainly dogs) were a
source of the remaining 91.3%. Rabies in
red fox was first diagnosed in 1961. From
1971 to 1977, rabid red foxes and steppe
foxes were identified by veterinary labo-
ratories almost annually, but foxes never
caused a documented human case (Bot-
vinkin et al., 1980). Both isolates, reported
in this study, were found in 1977 as a re-
sult of active surveillance. Their Arctic-like
properties were demonstrated in reactions
with N-Mabs; both viruses reacted with N-
MADb P-41 (Selimov et al., 1994). Rabies
was not reported from this territory after
1984. It was not possible to discern wheth-
er this focus has been maintained. How-
ever, rabies is still occasionally reported
from Mongolia (Angar, 2001).

Both group B lineages, as well as other
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Arctic-like viruses originating from India
and Pakistan, are separated from the
northern area of Arctic rabies virus circu-
lation by thousands of kilometers of alleg-
edly rabies-free territory. It appears that
these viruses originate from one progeni-
tor, and current diversity could be the re-
sult of further independent evolution.
However, it was not possible to make an
appropriate age estimation because of lack
of samples belonging to one lineage sep-
arated by a number of years.

Group C viruses formed a solid cluster
with considerable bootstrap support. They
were isolated in the huge steppe and for-
est-steppe territory of southeastern Eu-
rope, West Siberia, Kazakhstan, and Tuva.
The last focus in Tuva is separated from
the continuous western area of virus cir-
culation by the Altay mountains. It appears
to be a marginal zone of the rabies enzo-
otic territory of the Mongolian highland
steppes.

According to veterinary records and
field surveillance data, the disease in the
steppe zone of the FSU is maintained
mainly by the red fox. The steppe fox par-
ticipates in virus circulation concurrently
with the red fox, particularly in territories
of high population density (Sansizbaev,
1975; Malkov and Gribanova, 1980; Kuz-
min et al., 2001). We did not register any
genetic distinctions between the red fox
and steppe fox isolates.

In the area of group C circulation, the
first wildlife rabies outbreak was reported
among raccoon dogs, foxes, and wolves in
1945 in the region of the Volga River (Is-
akov, 1949). Since 1951, the red fox has
been considered the main rabies reservoir
(Amitrov, 1956; Nazarov, 1961). In 1949, a
fox rabies outbreak was described in Ka-
zakhstan (Sludsky, 1954). In West Siberia,
fox rabies has been registered in Novosi-
birsk province since 1958 and in Altay
province since 1961 (Vyazhevich, 1959;
Kiryanov, 1962). Dogs (with sporadic cases
caused by wolves) were the major source
of human rabies in the first half of the 20th
century, but foxes predominated as a

source of human rabies in the second half
of the century (Selimov, 1978). Group D
viruses originated from the western Eu-
ropean part of Russia, including the junc-
tion of the Russian, Ukrainian, and Belo-
russian borders (so-called Polesie). This
group retained an intermediate phyloge-
netic position between the lineages origi-
nating from other parts of Europe and
group C, which was concordant with geo-
graphic distribution of the viruses. Partic-
ular antigenic patterns of these viruses
were also suggested with N-MAbs (Seli-
mov et al., 1988). Red fox rabies, with in-
volvement of other wildlife (the raccoon
dog, badger (Meles meles), and sometimes
small mustelids), predominated in this ter-
ritory after World War II, and a high in-
cidence of human rabies has been found
there during the last few decades (Selimov,
1978; Cherkasskiy et al., 1995). We had
only two human isolates originating from
this region, one of them belonged to group
D (RV239), but the second belonged to
group C (RV241). Because of limited sam-
ples, we could not establish which virus
lineage caused human disease more fre-
quently.

Group E in our study was the same as
the “northeastern Europe” group de-
scribed earlier in Bourhy et al. (1999). The
isolates from the Baltic region (northwest-
ern part of Russia, Estonia, and Finland)
reacted with N-MAb P-41 (Kulonen and
Boldina, 1993; Selimov et al., 1994). Wild-
life rabies predominated there after World
War II (Selimov, 1978, 1998; Cherkasskiy
et al., 1995). Because raccoon dogs were
frequently involved in virus circulation in
this region and because the viruses formed
a separate lineage, the raccoon dog was
proposed to be an intermediary host in the
switch of rabies virus from dogs and
wolves to foxes (Bourhy et al., 1999). How-
ever, there is no support for this statement
in the epidemiologic surveillance data and
historical veterinary records (Selimov,
1978, 1998; Cherkasskiy et al., 1995). The
raccoon dog population density in the re-
gion is estimated at 3-20 times less than
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that of the red fox population (Nasymovich
and Isakov, 1985). It appears that the red
fox is more affected in the Russian part of
this area. However, raccoon dog cases pre-
dominated during the rabies outbreak in
Finland in 1988-89 (Nyberg et al., 1992).
Phylogenetically, this group was related to
other European lineages, and there is no
reason to consider it as specific to the rac-
coon dog.

The isolates originating from Georgia
and Turkey tended to form another line-
age that probably represented viruses cir-
culating south of the Black Sea region
(Johnson et al., 2003). One of the Geor-
gian isolates (RV307) was joined to viruses
originating from the Middle East. Accord-
ing to epidemiologic surveillance, dog ra-
bies predominated in the Transcaucasian
states of the FSU with only occasional in-
cidence among wild canids (Selimov, 1978,
1998; Cherkasskiy et al., 1995). We have
very few isolates from this territory to
make appropriate comparisons. Different
lineages of rabies virus appear to circulate
in southeastern Europe and the Middle
East (Bourhy et al., 1999; Johnson et al.,
2003), although further investigations are
needed. Because the viruses of group C
were not identified south of the Caucasus
Mountains, this mountain range could be
a physical barrier separating these rabies
virus populations.

All defined virus groups corresponded
to certain geographic regions. Conversely,
an association with host species was less
obvious. The principal host might be iden-
tified only in Arctic regions (arctic fox) and
in the Far East (raccoon dog). In other
territories, rabies virus is apparently asso-
ciated with foxes (red fox and steppe fox).

As has been suggested by others, the
current European epizootic of fox rabies
started in eastern Prussia or at the former
Russia-Polish border during 1935-45
(Toma and Andral, 1977; Bourhy et al.,
1999). Our data clearly demonstrate that
viruses of groups B and C could not derive
from that area. The distance from the
western borders of Russia to the Volga del-
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ta is about 1,500 km, and to Siberia and
Kazakhstan about 3,000-3,500 km. The
carrying capacity of biotopes and proper-
ties of fox populations in the western part
of European Russia are similar to those
described for central and western Europe.
The speed of the epizootic front move-
ment was estimated in Europe as 20-60
km per year (Toma and Andral, 1977; Pas-
toret and Brochier, 1999). With this veloc-
ity, the epizootic could not have reached
the Volga River region by the time of the
first outbreak there in 1945. In contrast,
the estimated carrying capacity of Asian
steppe biotopes appears limited. Fox pop-
ulations here are mobile, and the animals
seem to maintain rabies epizootics at a
population density of 0.3-0.8 foxes per
km2 (Malkov and Gribanova, 1980). The
speed of the epizootic front movement in
Western Siberia was estimated as 160-513
km/yr (Rybak et al., 1992). There are no
natural barriers to rabies progression, even
during winter. Hence, the viruses of group
C could spread along the steppe zone in
Asia rapidly. It is not clear where the epi-
zootic started. Additionally, small canids
maintain viruses of group B, as well as oth-
er lineages of rabies virus in the Middle
East (David et al.,, 2000; Johnson et al.,
2003). Perhaps different populations of ra-
bies virus independently switched to small
canids in distinct areas of Eurasia during
1930-70.

Previous analyses of rabies virus se-
quences for evidence of positive selection
have suggested that rabies virus evolves
largely under purifying or neutral selection
(Badrane and Tordo, 2001; Badrane et al.,
2001; Holmes et al., 2002). Application of
methods identical to those applied here
for rabies virus isolates from different geo-
graphic regions suggested that positive se-
lection was only occurring at a single co-
don in the ectodomain of the G gene (po-
sition 183). Both G gene data sets used in
this study also selected position 183 as be-
ing under positive selection. Additionally,
in this study, we found a further two co-
dons to be under positive selection, cor-
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responding to ~1% of the codons ana-
lyzed. Although this value is low, it remains
in the range estimated for genes of other
negative-strand RNA viruses (Woelk et al.,
2002).

In nature, rabies virus exists in distinct
lineages with little interaction of variants
following division (Bourhy et al., 1999;
Smith, 2002). We suggest that the detec-
tion of a greater number of codons under
positive selection here might be a result of
the restriction of this analysis to a defined
subset of virus lineages, rather than an
amalgamation of every available complete
gene sequence (Holmes et al., 2002). In
reality, processes of positive selection are
likely to be lineage-dependent, and an as-
sessment of positive selection across the
entire rabies virus genotype could distort
and dilute individual processes, such that
they are no longer detectable. Ideally, the
analysis here of Russian rabies virus iso-
lates would have been further divided into
individual variants. However, the number
of sequences available limits adequate sub-
division at this time.

The rabies virus glycoprotein is respon-
sible for binding to host cell receptors and
is a primary target of the immune response
(Dietzschold et al., 1983). In contrast, the
nucleoprotein is largely hidden from im-
mune surveillance. The lack of detectable
positive selection in the N gene concurs
with the results of others (Holmes et al.,
2002). All three of the G gene positive se-
lection sites occur within the neurotoxin-
like region (Lentz et al., 1984), a region
thought to participate in host cell binding
at neuromuscular junctions. These sites
might be subject to adaptive evolution
through host cell receptor binding, al-
though, using the sequences from this
study, we saw no obvious link between
amino acid substitutions at these sites and
phylogenetic placement. Although the ma-
jority of rabies virus replication occurs in
neurons that are under relatively weak im-
mune surveillance (Miller, 1999), it might
be over simplistic to state that rabies virus
evolves according to a neutral model (Bad-
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rane and Tordo, 2001). Subtle positive se-
lection at a handful of codons might be
sufficient to ensure that limited immune
pressure continues to force the rabies virus
to adapt to changing host environments,
especially in a diversity of small-bodied

carnivores.
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