Open Access
How to translate text using browser tools
1 December 2004 Variation of the Outer Circumferential Layer in the Limb Bones of Birds
Fleur Ponton, Andrzej Elżanowski, Jacques Castanet, Anusuya Chinsamy, Emmanuel De Margerie, Armand De Ricqlès, Jorge Cubo
Author Affiliations +
Abstract

The core of the limb bone cortex of mammals and birds is made of rapidly deposited, fibro-lamellar bone tissue (also present in non-avian theropods), which is usually surrounded by an avascular outer circumferential layer (OCL) of slowly deposited parallel-fibered bone. We present the first comparative allometric study of the relative OCL thickness (expressed as a fraction of the diaphyseal radius) in modern birds. Body size explains 79% of the OCL variation in thickness, which is inversely correlated with size, that is, shows negative allometry (slope -0.799). This may explain the apparent absence of OCL in the ratites. Since the OCL is deposited at the end of growth, we propose that its relative thickness probably correlates with the amount of slow, residual growth, which our results suggest to be on the average larger in small birds.

REFERENCES

1.

R. Amprino , G. Godina 1947. La struttura delle ossa nei vertebrati. Ricerche comparative negli amfibi e negli amnioti. Comment. Pontif. Acad. Sci. 11: 329–467. Google Scholar

2.

J. Blom , C. Lilja 2004. A comparative study of growth, skeletal development and eggshell composition in some species of birds. J. Zool. 262: 361–369. Google Scholar

3.

K. E. Campbell , L. Marcus 1992. The relationship of hindlimb bone dimensions to body weight in birds. Science Ser. Nat. Hist. Mus. Los Angeles County 36: 395–412. Google Scholar

4.

J. Castanet , A. Grandin , A. Abourachid , A. de Ricqlès 1996. [Expression of growth dynamics in the structure of periosteal bone in the Mallard Anas platyrhynchos]. C. R. Acad. Sci. Paris Life Sci. 319: 301–308. Google Scholar

5.

A. Chinsamy 1995. Histological pespectives on growth in the birds Struthio camelus and Sagittarius serpentarius. Courier Forschungsinst. Senckenberg 181: 317–323. Google Scholar

6.

A. Chinsamy , L. M. Chiappe , P. Dodson 1995. Mesozoic avian bone microstructure: physiological implications. Paleobiology 21: 561–574. Google Scholar

7.

A. Chinsamy , A. Elzanowski 2001. Evolution of growth pattern in birds. Nature 412: 402–403. Google Scholar

8.

A. Chinsamy , L. D. Martin , P. Dodson 1998. Bone microstructure of the diving Hesperonis and the volant Ichthyornis from the Niobrara Chalk of western Kansas. Cretaceous Research 19: 225–235. Google Scholar

9.

D. Cormack 1987. Ham's histology. Lippincott, New York. Google Scholar

10.

J. D. Currey 2002. Bones/Structure and Mechanics. Princeton Univ. Press, Princeton & Oxford. Google Scholar

11.

S. Dale , T. Slagsvold , H. M. Lampe , J. T. Lifjeld 2002. Agerelated changes in morphological characters in the pied flycatcher Ficedula hypoleuca. Avian Science 2: 153–166. Google Scholar

12.

D. Enlow , S.O. Brown 1957. A comparative histological study of fossil and Recent bone tissues. Part II. Texas J. Sci. 9:185–214. Google Scholar

13.

J. Felsenstein 1985. Phylogenies and the comparative method. Am. Nat. 125: 1–15. Google Scholar

14.

T. Garland Jr ., A. W. Dickerman , C. M. Janis , J. A. Jones 1993. Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42: 265–292. Google Scholar

15.

A. W. Ham 1953. Histology. 2nd ed. Lippincott, Philadelphia. Google Scholar

16.

G. A. Klevezal , A. V. Kaller Salas , S. P. Kirpichev 1972. Determination of age in birds by layers in the periosteal zone. Zool. Zhurnal 51: 1726–1730. Google Scholar

17.

P. Koubek , V. Hrabe 1984. Estimating the age of male Phasianus colchicus by bone histology and spur length. Folia Zool. 33:301–313. Google Scholar

18.

J. C. Lewis 1979. Periosteal layers do not indicate ages of Sandhill cranes. J. Wild. Manage. 43: 269–271. Google Scholar

19.

E. de Margerie , J. Cubo , J. Castanet 2002. Bone typology and growth rate: testing and quantifying “Amprino's rule” in the mallard (Anas platyrhynchos). C. R. Biologies 325: 221–230. Google Scholar

20.

G. Mayr , J. Clarke 2003. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics 19: 527–533. Google Scholar

21.

R. C. Nelson , T. A. Bookhout 1980. Counts of periosteal layers invalid for aging Canada geese. J. Wild. Manage. 44: 518–521. Google Scholar

22.

D. E. Pomeroy 1980. Growth and plumage changes of the Grey Crowned Crane Balearica regulorum gibbericeps. Bull. Brit. Ornith. Club 100: 219–223. Google Scholar

23.

A. Purvis , A. Rambaut 1995. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Computer Appl. Biosci. 11: 247–251. Google Scholar

24.

A. de Ricqlès , K. Padian , J. R. Horner 2001. The bone histology of basal birds in phylogenetic and ontogenetic perspective. In: J. Gauthier , L. F. Gall (eds). New perspectives on the origin and early evolution of birds. Peabody Mus. Nat. Hist./Yale Univ., New Haven, pp. 411–426. Google Scholar

25.

A. de Ricqlès , K. Padian , J. R. Horner , E. T. Lamm , N. Myhrvold 2003. Osteology of Confuciusornis sanctus (Theropoda: Aves). J. Vert. Pal. 23: 373–386. Google Scholar

26.

J. M. Starck , R. E. Ricklefs 1998. Variation, constraint, and phylogeny. Comparative analysis of variation of growth. In: J. M. Starck , R. E. Ricklefs (eds). Avian growth and development. Evolution within the altricial-precocial spectrum. Oxford Univ. Press, New York, pp. 247–265. Google Scholar

27.

R. W. M. van Soest , W. L. van Utrecht 1978. The layered structures of bones of birds as a possible indication of age. Bijdragen tot de Dierkunde 41: 61–66. Google Scholar

28.

M. van Tuinen , S. B. Hedges 2001. Calibration of avian molecular clocks. Mol. Biol. Evol. 18: 206–213. Google Scholar

29.

W. W. Weathers , R. B. Siegel 1995. Body size establishes the scaling of avian postnatal metabolic rate: an interspecific analysis using phylogenetically independent contrasts. Ibis 137: 532–542. Google Scholar

30.

F. Zhang , L. Hou , L. Ouyang 1998. Osteological microstructure of Confuciusornis: preliminary report. Vertebrata Palasiatica 36: 126–135. Google Scholar
Fleur Ponton, Andrzej Elżanowski, Jacques Castanet, Anusuya Chinsamy, Emmanuel De Margerie, Armand De Ricqlès, and Jorge Cubo "Variation of the Outer Circumferential Layer in the Limb Bones of Birds," Acta Ornithologica 39(2), 137-140, (1 December 2004). https://doi.org/10.3161/068.039.0210
Received: 1 July 2004; Accepted: 1 September 2004; Published: 1 December 2004
KEYWORDS
bone histology
ossification
periosteal bone
phylogenetically independent contrasts
postnatal growth
skeleton
Back to Top