Translator Disclaimer
1 July 2005 Applications of Free-Electron Lasers in the Biological and Material Sciences
Author Affiliations +
Abstract

Free-Electron Lasers (FELs) collectively operate from the terahertz through the ultraviolet range and via intracavity Compton backscattering into the X-ray and gamma-ray regimes. FELs are continuously tunable and can provide optical powers, pulse structures and polarizations that are not matched by conventional lasers. Representative research in the biological and biomedical sciences and condensed matter and material research are described to illustrate the breadth and impact of FEL applications. These include terahertz dynamics in materials far from equilibrium, infrared nonlinear vibrational spectroscopy to investigate dynamical processes in condensed-phase systems, infrared resonant-enhanced multiphoton ionization for gas-phase spectroscopy and spectrometry, infrared matrix-assisted laser-desorption–ionization and infrared matrix-assisted pulsed laser evaporation for analysis and processing of organic materials, human neurosurgery and ophthalmic surgery using a medical infrared FEL and ultraviolet photoemission electron microscopy for nanoscale characterization of materials and nanoscale phenomena. The ongoing development of ultraviolet and X-ray FELs are discussed in terms of future opportunities for applications research.

G. S. Edwards, S. J. Allen, R. F. Haglund, R. J. Nemanich, B. Redlich, J. D. Simon, and W-C. Yang "Applications of Free-Electron Lasers in the Biological and Material Sciences," Photochemistry and Photobiology 81(4), 711-735, (1 July 2005). https://doi.org/10.1562/2004-11-08-IR-363R.1
Received: 8 November 2004; Accepted: 1 February 2005; Published: 1 July 2005
JOURNAL ARTICLE
25 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top