Translator Disclaimer
1 January 2011 Plant Community and Soil Environment Response to Summer Fire in the Northern Great Plains
Author Affiliations +
Abstract

Fire is an important process in many ecosystems, especially grasslands. However, documentation of plant community and soil environment responses to fire is limited for semiarid grasslands relative to that for mesic grasslands. Replicated summer fire research is lacking but necessary because summer is the natural fire season and the period of most wildfires in the western United States. We evaluated summer fire effects on soil temperature, soil moisture, aboveground biomass, root biomass, and functional group composition for 2 yr in semiarid C3-dominated northern Great Plains. Following pre-treatment measures, four 0.75-ha sites were burned during August for comparison with nonburned sites, and the experiment was repeated the next year on adjacent sites to assess weather effects. Soils were about 0.5°C cooler on burned sites in the first experiment and similar in the second. Burned sites were consistently 1% drier than nonburned sites. Litter was reduced by fire but did not account for changes in soil moisture because differences occurred before the growing season. Current-year aboveground biomass and root biomass were similar between treatments, indicating productivity was resistant to summer fire. Perennial C3 grasses increased in dominance because of positive biomass responses to fire for all but the bunchgrass, Hesperostipa comata, and a reduction of annual grasses. Perennial C4 grasses were unaffected by summer fire. H. comata was resilient, with biomass on burned sites equaling nonburned sites the second growing season. Biomass was more responsive to precipitation than fire, and the fire-induced changes in species composition suggest exclusion of fire may be a greater disturbance than summer fire.

Lance T. Vermeire, Jessica L. Crowder, and David B. Wester "Plant Community and Soil Environment Response to Summer Fire in the Northern Great Plains," Rangeland Ecology and Management 64(1), 37-46, (1 January 2011). https://doi.org/10.2111/REM-D-10-00049.1
Received: 22 March 2010; Accepted: 1 September 2010; Published: 1 January 2011
JOURNAL ARTICLE
10 PAGES


SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top