Open Access
How to translate text using browser tools
1 June 2003 Mitochondrial and Nuclear DNA Sequence Data Provide Resolution to Sister-Group Relationships within Pteronotus (Chiroptera: Mormoopidae)
Ronald A. Van Den Bussche, Sarah E. Weyandt
Author Affiliations +
Abstract

Whereas it is generally agreed that the Neotropical bat family Mormoopidae, as well as the two mormoopid genera (Mormoops and Pteronotus) are each monophyletic, relationships among the six extant species of Pteronotus remain unresolved. The purpose of this study was to evaluate phylogenetic relationships within Pteronotus using DNA sequence data from the mitochondrial ribosomal and cytochrome b genes and the nuclear Recombination Activating Gene-2 based on likelihood inferential techniques (maximum likelihood and Bayesian phylogenetics). Results of this study present, for the first time, a fully resolved and strongly supported phylogeny for all relationships within Pteronotus. These data strongly support: sister-group relationships between davyi and gymnonotus (subgenus pteronotus), between macleayii and quadridens (subgenus chilonycteris), and between the subgenera pteronotus and chilonycteris. Pteronotus personatus is sister to this clade and P. parnellii is the most basal lineage of Pteronotus. Although this is the first study to provide a fullyresolved and strongly supported hypothesis for the phylogenetic relationships among species of Pteronotus, future work must focus on phylogeographic surveys within each species because previous studies have suggested that parnellii and personatus may contain undescribed species.

LITERATURE CITED

1.

R. A. Adams , and S. C. Pedersen . 2000. Ontogeny, functional ecology, and evolution of bats. Cambridge University Press, Cambridge, 398 pp. Google Scholar

2.

M. E. Alfaro , S. Zoller , and F. Lutzoni . 2003. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo Sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution, 20: 255–266. Google Scholar

3.

S. Anderson , M. H. L. De Bruiln , A. R. Coulson , I. C. Eperon , E Sanger , and I. G. Young . 1982. Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. Journal of Molecular Biology, 156: 683–717. Google Scholar

4.

R. J. Baker , and J. W. Bickham . 1980. Karyotypic evolution in bats: evidence of extensive and conservative chromosomal evolution in closely related taxa. Systematic Zoology, 29: 239–253. Google Scholar

5.

R. J. Baker , C. A. Porter , J. C. Patton , and R. A. Van Den Bussche . 2000. Systematics of bats of the family Phyllostomidae based on RAG2 DNA sequences. Occasional Papers, Museum of Texas Tech University, 202: 1–16. Google Scholar

6.

J. B. Bowles , J. P. Cope , and E. A. Cope . 1979. Thermal ecology of mustached and ghost-faced bats (Mormoopidae) in Venezuela. Journal of Mammalogy, 73: 365–378. Google Scholar

7.

P. De Rijk , Y. Van De Peer , S. Chapella , and R. D. Wachter . 1994. Database on the structure of the large ribosomal subunit RNA. Nucleic Acids Research, 22: 3495–3501. Google Scholar

8.

M. Dowton , and A. D. Austin . 2002. Increased congruence does not necessarily indicate increased phylogenetic accuracy — the behavior of the incongruence length difference test in mixed-model analyses. Systematic Biology, 51: 19–31. Google Scholar

9.

L. H. Emmons 1997. Neotropical rainforest mammals: a field guide, 2nd edition. University of Chicago Press, Chicago, IL, 307 pp. Google Scholar

10.

J. S. Farris , M. Kallersjo , A. G. Kluge , and C. Bult . 1994. Testing significance of incongruence. Cladistics, 10: 315–319. Google Scholar

11.

B. S. Gaut , and P. O. Lewis . 1995. Success of maximum-likelihood phylogeny inference in the 4taxon case. Molecular Biology and Evolution, 12: 152–162. Google Scholar

12.

N. Goldman 1998. Phylogenetic information and experimental design in molecular systematics. Proceedings of the Royal Society of London, Series B, 265: 1779–1786. Google Scholar

13.

S. R. Hoofer, S. A. Reeder, E. W. Hansen, and R. A. Van Den Bussche . In press. Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera: Yangochiroptera). Journal of Mammalogy. Google Scholar

14.

J. P. Huelsenbeck 1995. Performance of phylogenetic methods in simulation. Systematic Biology, 44: 17–48. Google Scholar

15.

J. P. Huelsenbeck , and F. R. Ronquist . 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 17: 754–755. Google Scholar

16.

P. Hulva , and I. Horáček . 2002. Craseonycteris thonglongyai (Chiroptera: Craseonycteridae) is a rhinolophoid: molecular evidence from cytochrome b. Acta Chiropterologica, 4: 107–120. Google Scholar

17.

T. C. Kearney, M. Volleth, G. Contrafatto, and P. J. Taylor . Systematic implications of chromosome GTG-band and bacula morphology four Southern African Eptesicus and Pipistrellus and several other species of Vespertilioninae (Chiroptera: Vespertilionidae). Acta Chiropterologica, 4: 55–76. Google Scholar

18.

K. F. Koopman 1993. Order Chiroptera. Pp. 137–241, in Mammal species of the world, a taxonomic reference, 2nd edition ( D. E. Wilson and D. M. Reeder , eds.). Smithsonian Institution Press, Washington, D.C., 1206 pp. Google Scholar

19.

K. F. Koopman 1994. Chiroptera: systematics. Handbook of Zoology, Vol. VIII, part 60, Mammalia. Walter de Gruyter, Berlin, 217 pp. Google Scholar

20.

A. D. Leaché , and T. W. Reeder . 2002. Molecular systematics of the eastern fence lizard (Sceloperus undulates): a comparison of parsimony, likelihood, and Bayesian approaches. Systematic Biology, 51: 44–68. Google Scholar

21.

P. O. Lewis 2001. Phylogenetic systematics turns over a new leaf. Trends in Ecology and Evolution, 16: 30–37. Google Scholar

22.

N. Lewis-Oritt , C. A. Porter , and R. J. Baker . 2001. Molecular systematics of the family Mormoopidae (Chiroptera) based on cytochrome b and Recombination Activating Gene 2 sequences. Molecular Phylogenetics and Evolution, 20: 426–436. Google Scholar

23.

Y-H. Lin , and D. Penny . 2001. Implications for bat evolution from two new complete mitochondrial genomes. Molecular Biology and Evolution, 18: 684–688. Google Scholar

24.

W. P. Maddison , and D. R. Maddison . 1992. MacClade: Analysis of phylogeny and character evolution. Version 3.0. Sinauer Associates, Sunderland, MA. Google Scholar

25.

O. Madsen , M. Scally , C. J. Douady , D. J. Kao , R. W. Debry , R. Adkins , H. M. Amrine , M. J. Stanhope , W. W. De Jon , and M. S. Springer . 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature, 409: 610–614. Google Scholar

26.

M. R Mickevich , and J. S. Farris . 1981. The implications of congruence in Menidia. Systematic Zoology, 30: 351–370. Google Scholar

27.

W. J. Murphy, E. Eizirk, W. E. Johnson, Y. P. Zhang, O. A. Ryder, and S. J. O'brien . 2001a. Molecular phylogenetics and the origin of placental mammals. Nature, 409: 614–618. Google Scholar

28.

W. J. Murphy, E. Eizirk, S. J. O'brien, O. Madsen, M. Scally, C. J. Douady, E. Teeling, O. A. Ryder, M. J. Stanhope, W. W. De Jong, and M. S. Springer . 2001b. Resolution of early placental mammal radiations using Bayesian phylogenetics. Science, 294: 2348–2351. Google Scholar

29.

M. Nikaido , M. Harada , Y. Cao , M. Hasegawa , and N. Okada . 2000. Monophyletic origin of the order Chiroptera and its phylogenetic position among Mammalia, as inferred from the complete sequence of the mitochondrial DNA of a Japanese megabat, the Ryuku flying fox (Pteropus dasymallus). Journal of Molecular Evolution, 51: 318–328. Google Scholar

30.

M. J. Novacek 1992. Morphological and molecular inroads to phylogeny. Pp. 85–131, in Interpreting the hierarchy of nature: from systematic patterns to evolutionary process theories ( L. Grande and O. Rieppel , eds.). Academic Press, New York, 298 pp. Google Scholar

31.

M. J. Novacek , and A. R. Wyss . 1986. Higher level relationships of the Recent Eutherian orders: morphological evidence. Cladistics, 2: 257–287. Google Scholar

32.

A. Novick 1963. Orientation in Neotropical bats. II. Phyllostomatidae and Desmodontidae. Journal of Mammalogy, 44: 44–56. Google Scholar

33.

J. C. Patton , and R. J. Baker . 1978. Chromosomal homology and evolution of phyllostomatoid bats. Systematic Zoology, 27: 449–462. Google Scholar

34.

C. A. Porter, S. R. Hoofer, R. A. Van Den Bussche, T. E. Lee JR., and R. J. Baker . In press. Systematics of the round-eared bats (Tonatia and Lophostoma) based on nuclear and mitochondrial sequences. Journal of Mammalogy. Google Scholar

35.

D. Posada , and K. A. Crandall . 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817–818. Google Scholar

36.

F. A. Reid 1997. A field guide to the mammals of Central America and southeast Mexico. Oxford University Press, New York, 334 pp. Google Scholar

37.

N. B. Simmons , and T. M. Conway . 2001. Phylogenetic relationships of mormoopid bats (Chiroptera: Mormoopidae) based on morphological data. Bulletin of the American Museum of Natural History, 258: 1–97. Google Scholar

38.

N. B. Simmons , and R. S. Voss . 1998. The mammals of Paracou, French Guiana: a Neotropical lowland rainforest fauna. Part I. Bats. Bulletin of the American Museum of Natural History, 237: 1–219. Google Scholar

39.

J. W. Sites Jr , J. W. Bickham , and M. W. Haiduk . 1981. Conservative chromosomal change in the bat family Mormoopidae. Canadian Journal of Genetic Cytology, 23: 459–467. Google Scholar

40.

J. D. Smith 1972. Systematics of the chiropteran family Mormoopidae. University of Kansas Museum of Natural History, Miscellaneous Publications No. 56: 1–132. Google Scholar

41.

M. S. Springer , and E. Douzery . 1996. Secondary structure, conservation of functional sites, and rates of evolution among mammalian mitochondrial 12S rRNA genes based on sequences from placentals, marsupials, and a monotreme. Journal of Molecular Evolution, 43: 357–373. Google Scholar

42.

D. L. Swofford 2000. PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts. Google Scholar

43.

E. C. Teeling , M. Scally , D. J. Kao , M. L. Romagnoli , M. S. Springer , and M. J. Stanhope . 2000. Molecular evidence regarding the origin of echolocation and flight in bats. Nature, 403: 188–192. Google Scholar

44.

E. C. Teeling , O. Madsen , R. A. Van Den Bussche , W. W. De Jong , M. J. Stanhope , and M. S. Springer . 2002. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proceedings of the National Academy of Sciences, USA, 99: 1431–1436. Google Scholar

45.

J. D. Thompson , T. J. Gibson , F. Plewniak , F. Jeanmougin , and D. G. Higgins . 1997. The clustal X windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Research, 25: 4876–4882. Google Scholar

46.

R. A. Van Den Bussche , And R. J. Baker . 1993. Molecular phylogenetics of the New World bat genus Phyllostomus based on cytochrome B DNA sequence variation. Journal of Mammalogy, 74: 793–802. Google Scholar

47.

R. A. Van Den Bussche , R. J. Baker , H. A. Wichman , and M. J. Hamilton . 1993. Molecular phylogenetics of Stenodermatini bat genera: congruence of nuclear and mitochondrial DNA. Molecular Biology and Evolution, 10: 944–959. Google Scholar

48.

R. A. Van Den Bussche , J. L. Hudgeons , and R. J. Baker . 1998. Phylogenetic accuracy, stability, and congruence: relationships within and among the New World bat genera Artibeus, Dermaura, and Koopmania. Pp. 59–71, in Bat biology and conservation ( T. H. Kunz and P. A. Racey , eds.). Smithsonian Institution Press, Washington, D.C., 365 pp. Google Scholar

49.

R. A. Van Den Bussche , S. R. Hoofer , and N. B. Simmons . 2002. Phylogenetic relationships of mormoopid bats using mitochondrial gene sequences and morphology. Journal of Mammalogy, 83: 40–48. Google Scholar

50.

M. Vater 1998. Adaptations of the auditory periphery of bats for echolocation. Pp. 231–247, in Bat biology and conservation ( T. H. Kunz and P. A. Racey , eds.). Smithsonian Institution Press, Washington, D.C., 365 pp. Google Scholar

51.

M. Vater 2000. Evolutionary plasticity and ontogeny of the bat cochlea. Pp. 137–173, in Ontogeny, functional ecology, and evolution of bats ( R. A. Adams and S. C. Pedersen , eds.). Cambridge University Press, Cambridge, 398 pp. Google Scholar

52.

M. Volleth , and K.-G. Heller . 1994. Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis. Zeitschrift für Zoologische Systematik und Evolutionsforschung, 32: 11–34. Google Scholar

53.

M. Volleth , G. Bronner , M. C. Göpfert , K.-G. Heller , O. Von Helversen , and H.-S. Yong . 2001. Karyotype comparison and phylogenetic relationships of Pipistrellus-like bats (Vespertilionidae; Chiroptera; Mammalia). Chromosome Research, 9: 25–46. Google Scholar

54.

J. J. Weins 1998. Combining data sets with different phylogenetic histories. Systematic Biology, 47: 568–581. Google Scholar

55.

S. Whelan , P. Lió , and N. Goldman . 2001. Molecular Phylogenetics: state-of-the-art methods for looking into the past. Trends in Genetics, 17: 262–272. Google Scholar

56.

A. D. Yoder , J. A. Irwin , and B. A. Payseur . 2001. Failure of the ILD to determine data combinability for the slow loris phylogeny. Systematic Biology, 50: 408–424. Google Scholar
Ronald A. Van Den Bussche and Sarah E. Weyandt "Mitochondrial and Nuclear DNA Sequence Data Provide Resolution to Sister-Group Relationships within Pteronotus (Chiroptera: Mormoopidae)," Acta Chiropterologica 5(1), 1-13, (1 June 2003). https://doi.org/10.3161/001.005.0101
Received: 6 February 2003; Accepted: 1 April 2003; Published: 1 June 2003
Back to Top