In West Africa, tree preferences of wintering migratory birds (and African residents) were quantified in order to assess the importance of wintering conditions on distribution, abundance and trends of insectivorous woodland birds. This study encompassed 2000 plots between 10–18°N and 0–17°W, visited in October-March 2007–2015, and covered 183 woody species and 59 bird species. Canopy surface (measured in a horizontal plane) and birds present were determined in 308,000 trees and shrubs. Absolute bird density amounted to 13 birds/ha canopy, on average, varying for the different woody species between 0 and 130 birds/ha canopy. Birds were highly selective in their tree choice, with no insectivorous birds at all in 65% of the woody species. Bird density was four times higher in acacias and other thorny species than in non-thorny trees, and seven times higher in trees with leaves having a low crude fibre content than in trees with high crude fibre foliage. Salvadora persica shrubs, but only when carrying berries, were even more attractive. Overall, densities of migratory woodland birds were highest in the (thorny) trees of the Sahelian vegetation zone. This counterintuitive finding, with highest numbers of wintering birds in the driest and most desiccated parts of West Africa (short of the Sahara), also known as Moreau's Paradox, can be explained by the foliage palatability hypothesis. The Sahelian vegetation zone has always been subject to heavy grazing from large herbivores, and as a consequence woody species have evolved mechanical defences (thorns) to withstand grazing of large herbivores, at the expense of chemical defence against arthropods. South of the Sahel, with a much lower grazing pressure, thorny trees (rich in arthropods) are replaced by (usually non-thorny) trees with less palatable foliage and a higher crude fibre content, and hence with less arthropod food for insectivorous birds.