Translator Disclaimer
1 December 2007 Antimicrobial Susceptibility and Distribution of Antimicrobial-Resistance Genes Among Enterococcus and Coagulase-Negative Staphylococcus Isolates Recovered from Poultry Litter
Author Affiliations +
Abstract

Data on the prevalence of antimicrobial resistant enterococci and staphylococci from the poultry production environment are sparse in the United States. This information is needed for science-based risk assessments of antimicrobial use in animal husbandry and potential public-health consequences. In this study, we assessed the susceptibility of staphylococci and enterococci isolated from poultry litter, recovered from 24 farms across Georgia, to several antimicrobials of veterinary and human health importance. Among the 90 Enterococcus isolates recovered, E. hirae (46%) was the most frequently encountered species, followed by E. faecium (27%), E. gallinarum (12%), and E. faecalis (10%). Antimicrobial resistance was most often observed to tetracycline (96%), followed by clindamycin (90%), quinupristin–dalfopristin (62%), penicillin (53%), erythromycin (50%), nitrofurantoin (49%), and clarithromycin (48%). Among the 110 staphylococci isolates recovered, only coagulase-negative staphylococci (CNS) were identified with the predominant Staphylococcus species being S. sciuri (38%), S. lentus (21%), S. xylosus (14%) and S. simulans (12%). Resistance was less-frequently observed among the Staphylococcus isolates for the majority of antimicrobials tested, as compared with Enterococcus isolates, and was primarily limited to clarithromycin (71%), erythromycin (71%), clindamycin (48%), and tetracycline (38%). Multidrug resistance (MDR) phenotypes were prevalent in both Enterococcus and Staphylococcus; however, Enterococcus exhibited a statistically significant difference in the median number of antimicrobials to which resistance was observed (median  =  5.0) compared with Staphylococcus species (median  =  3.0). Because resistance to several of these antimicrobials in gram-positive bacteria may be attributed to the shuttling of common drug-resistance genes, we also determined which common antimicrobial-resistance genes were present in both enterococci and staphylococci. The antimicrobial resistance genes vat(D) and erm(B) were present in enterococci, vgaB in staphylococci, and mobile genetic elements Tn916 and pheromone-inducible plasmids were only identified in enterococci. These data suggest that the disparity in antimicrobial-resistance phenotypes and genotypes between enterococci and staphylococci isolated from the same environment is, in part, because of barriers preventing exchange of mobile DNA elements.

Shabbir Simjee, Patrick F. McDermott, David G. White, Charles Hofacre, Roy D. Berghaus, Peggy J. Carter, Leigh Stewart, Tongrui Liu, Marie Maier, and John J. Maurer "Antimicrobial Susceptibility and Distribution of Antimicrobial-Resistance Genes Among Enterococcus and Coagulase-Negative Staphylococcus Isolates Recovered from Poultry Litter," Avian Diseases 51(4), 884-892, (1 December 2007). https://doi.org/10.1637/7973-032607-REGR.1
Received: 26 March 2007; Accepted: 1 May 2007; Published: 1 December 2007
JOURNAL ARTICLE
9 PAGES


SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top