Free Access
How to translate text using browser tools
19 September 2023 Polystyrene micro- and nanoplastics cause placental dysfunction in mice
Katherine C. Dibbon, Grace V. Mercer, Alexandre S. Maekawa, Jenna Hanrahan, Katherine L. Steeves, Lauren C.M. Ringer, André J. Simpson, Myrna J. Simpson, Ahmet A. Baschat, John C. Kingdom, Christopher K. Macgowan, John G. Sled, Karl J. Jobst, Lindsay S. Cahill
Author Affiliations +
Abstract

Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 µm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.

Summary Sentence

Exposure to polystyrene micro- and nanoplastics during pregnancy causes placental dysfunction, leading to fetal blood flow redistribution and growth restriction in mice.

Graphical Abstract

img-z1-24_209.jpg
Katherine C. Dibbon, Grace V. Mercer, Alexandre S. Maekawa, Jenna Hanrahan, Katherine L. Steeves, Lauren C.M. Ringer, André J. Simpson, Myrna J. Simpson, Ahmet A. Baschat, John C. Kingdom, Christopher K. Macgowan, John G. Sled, Karl J. Jobst, and Lindsay S. Cahill "Polystyrene micro- and nanoplastics cause placental dysfunction in mice," Biology of Reproduction 110(1), 209-216, (19 September 2023). https://doi.org/10.1093/biolre/ioad126
Received: 3 July 2023; Accepted: 13 September 2023; Published: 19 September 2023
SIGN IN TO VIEW ARTICLE
KEYWORDS
fetal growth restriction
Microplastics
Mouse
nanoplastics
pregnancy
ultrasound
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top