How to translate text using browser tools
9 October 2023 YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia
Ming Guo, Xueliang Li, Tianjiao Li, Ruifang Liu, Weijun Pang, Jun Luo, Wenxian Zeng, Yi Zheng
Author Affiliations +
Abstract

Genomic integrity is critical for sexual reproduction, ensuring correct transmission of parental genetic information to the descendant. To preserve genomic integrity, germ cells have evolved multiple DNA repair mechanisms, together termed as DNA damage response. The RNA N6-methyladenosine is the most abundant mRNA modification in eukaryotic cells, which plays important roles in DNA damage response, and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) is a well-acknowledged N6-methyladenosine reader protein regulating the mRNA decay and stress response. Despite this, the correlation between YTHDF2 and DNA damage response in germ cells, if any, remains enigmatic. Here, by employing a Ythdf2-conditional knockout mouse model as well as a Ythdf2-null GC-1 mouse spermatogonial cell line, we explored the role and the underlying mechanism for YTHDF2 in spermatogonial DNA damage response. We identified that, despite no evident testicular morphological abnormalities under the normal circumstance, conditional mutation of Ythdf2 in adult male mice sensitized germ cells, including spermatogonia, to etoposide-induced DNA damage. Consistently, Ythdf2-KO GC-1 cells displayed increased sensitivity and apoptosis in response to DNA damage, accompanied by the decreased SET domain bifurcated 1 (SETDB1, a histone methyltransferase) and H3K9me3 levels. The Setdb1 knockdown in GC-1 cells generated a similar phenotype, but its overexpression in Ythdf2-null GC-1 cells alleviated the sensitivity and apoptosis in response to DNA damage. Taken together, these results demonstrate that the N6-methyladenosine reader YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia, which provides novel insights into the mechanisms underlying spermatogonial genome integrity maintenance and therefore contributes to safe reproduction.

Summary Sentence

Loss or reduction of the m6A reader YTHDF2 sensitizes spermatogonia to DNA damage, which is mediated, at least in part, by the H3K9 methyltransferase SETDB1.

Graphical Abstract

img-z2-2_45.jpg
Ming Guo, Xueliang Li, Tianjiao Li, Ruifang Liu, Weijun Pang, Jun Luo, Wenxian Zeng, and Yi Zheng "YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia," Biology of Reproduction 110(1), 45-59, (9 October 2023). https://doi.org/10.1093/biolre/ioad136
Received: 4 May 2023; Accepted: 6 October 2023; Published: 9 October 2023
KEYWORDS
DNA damage
genome integrity
H3K9me3
SETDB1
spermatogonia
YTHDF2
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top