How to translate text using browser tools
1 May 2002 Thrombin Generation and Presence of Thrombin Receptor in Ovarian Follicles
Lindsay E. Roach, James J. Petrik, Louise Plante, Jonathan LaMarre, Patricia A. Gentry
Author Affiliations +
Abstract

Prothrombin, once converted to its enzymatically active form (i.e., thrombin), induces a broad spectrum of cellular responses in both vascular and avascular tissues. Bovine ovarian granulosa cells isolated from healthy follicles of various sizes contain both prothrombin mRNA and immunologically reactive prothrombin that appears to be identical to prothrombin in follicular fluid and plasma. When tissue factor, the primary physiological activator of thrombin generation in plasma, is used to initiate thrombin formation, the profile of prothrombin-to-thrombin conversion is similar in follicular fluid and plasma. The conclusion that biologically functional prothrombin is synthesized by granulosa cells is further supported by evidence that mRNA for γ-glutamyl carboxylase, an enzyme essential for the vitamin K-dependent posttranslational modification of prothrombin, is expressed in granulosa cells in a manner similar to prothrombin mRNA. Thrombin's biological effects are mediated through selective proteolytic cleavage and activation of specific receptors. Bovine granulosa cells possess thrombin receptor (PAR-1) mRNA, and as seen with prothrombin mRNA and γ-glutamyl carboxylase mRNA, cells isolated from small follicles possess more PAR-1 mRNA than cells from large follicles. Thrombin receptor expression by cells in close proximity to an active thrombin-generating system suggests that these factors may be important mediators of cellular function in the ovarian follicle.

Lindsay E. Roach, James J. Petrik, Louise Plante, Jonathan LaMarre, and Patricia A. Gentry "Thrombin Generation and Presence of Thrombin Receptor in Ovarian Follicles," Biology of Reproduction 66(5), 1350-1358, (1 May 2002). https://doi.org/10.1095/biolreprod66.5.1350
Received: 19 September 2001; Accepted: 1 November 2001; Published: 1 May 2002
KEYWORDS
follicle
follicular development
granulosa cells
ovary
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top