The aim of this study was to establish a culture system to support the growth of bovine oocytes as enclosed in granulosa cell complexes that extend on a flat substratum. Such systems have been established for mouse oocytes but are not applicable to larger animals because it is difficult to maintain an appropriate association between the oocyte and companion somatic cells. Growing bovine oocytes with a mean diameter of 95 μm were isolated from early antral follicles: the growing stage corresponds to that of oocytes in preantral follicles of 12-day-old mice. Oocyte-granulosa cell complexes were cultured for 14 days in modified TCM199 medium supplemented with 5% fetal bovine serum, 4 mM hypoxanthine, and 0.1 μg/ml estradiol. The novel modification made for this medium was a high concentration, 4% (w/v), of polyvinylpyrrolidone (PVP; molecular weight of 360 000). The flat substratum used was either an insert membrane fit in the culture plate or the bottom surface of the wells of 96-well culture plates. PVP influenced the organization of complexes, resulting in a firm association between the oocyte and the innermost layer of surrounding cells. More oocytes enclosed by a complete cell layer were recovered from the medium supplemented with 4% PVP than from the control medium. Similarly, of the oocytes initially introduced into the growth culture, a significantly larger proportion developed to the blastocyst stage from medium containing 4% PVP than from medium without PVP. When PVP medium was used, the overall yield of blastocysts was similar between the system with the insert membranes (12%) and that with the 96-well culture plates (9%). A calf was produced from one of four embryos derived from oocytes grown in 96-well culture plates, matured, and fertilized in vitro and then transferred to a recipient cow.
How to translate text using browser tools
1 January 2004
In Vitro Growth and Development of Bovine Oocyte-Granulosa Cell Complexes on the Flat Substratum: Effects of High Polyvinylpyrrolidone Concentration in Culture Medium
Yuji Hirao,
Takehiro Itoh,
Manabu Shimizu,
Kosuke Iga,
Kazushige Aoyagi,
Masato Kobayashi,
Masayuki Kacchi,
Hiroyoshi Hoshi,
Naoki Takenouchi
ACCESS THE FULL ARTICLE
follicle
gamete biology
granulosa cells
oocyte development