How to translate text using browser tools
1 October 2004 Protection of Porcine Oocytes Against Cell Damage Caused by Oxidative Stress During In Vitro Maturation: Role of Superoxide Dismutase Activity in Porcine Follicular Fluid
Hideki Tatemoto, Norio Muto, Ikuko Sunagawa, Akihisa Shinjo, Tadashi Nakada
Author Affiliations +
Abstract

To elucidate the beneficial effects of porcine follicular fluid (pFF) added to maturation medium on the sustenance of cytoplasmic maturation responsible for the subsequent developmental competence after in vitro fertilization (IVF) of porcine oocytes, we focused on the antioxidative role of pFF in its function of protecting oocytes from reactive oxygen species (ROS)-induced cell damage. Porcine follicular fluid collected from small (2–6 mm) follicles had about 7.2-fold higher levels of superoxide dismutase (SOD) activity than that of fetal bovine serum (FBS), and this activity was markedly blocked by the CuZn-SOD inhibitor, diethyldithiocarbamate (DETC). The interruption of meiotic progression and the increasing intracellular glutathione (GSH) content throughout the maturation period, as well as an outbreak of DNA damage in oocytes and cumulus cells were difficult to detect in oocytes cultured in a medium supplemented with 10% pFF, even in the presence of ROS generated by the hypoxanthine-xanthine oxidase system, whereas cell damage encompassed by ROS was prominent in oocytes cultured with 10% FBS and 10% pFF plus 100 μM DETC. Similarly, significant enhancement to the degree of transformation of the sperm nucleus into the male pronucleus (MPN) after in vitro fertilization was shown by the addition of pFF to the maturation medium. The presence of DETC during in vitro maturation reduced the ability of oocytes to promote MPN formation to the same extent as oocytes matured with FBS. The proportion developing to the blastocyst stage was increased in oocytes that matured with pFF, but this developmental competence was significantly lowered by treatment with DETC (P < 0.05). These findings suggest that pFF plays a critical role in protecting oocytes from oxidative stress through a higher level of radical scavenging activity elicited from SOD isoenzymes, resulting in the enhancement of cytoplasmic maturation responsible for developmental competence postfertilization.

Hideki Tatemoto, Norio Muto, Ikuko Sunagawa, Akihisa Shinjo, and Tadashi Nakada "Protection of Porcine Oocytes Against Cell Damage Caused by Oxidative Stress During In Vitro Maturation: Role of Superoxide Dismutase Activity in Porcine Follicular Fluid," Biology of Reproduction 71(4), 1150-1157, (1 October 2004). https://doi.org/10.1095/biolreprod.104.029264
Received: 5 March 2004; Accepted: 1 May 2004; Published: 1 October 2004
KEYWORDS
Apoptosis
early development
gamete biology
in vitro fertilization
ovum
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top