How to translate text using browser tools
1 October 2008 Protein Phosphatase 3 Differentially Modulates Vascular Endothelial Growth Factor- and Fibroblast Growth Factor 2-Stimulated Cell Proliferation and Signaling in Ovine Fetoplacental Artery Endothelial Cells
Kai Wang, Yang Song, Dong-Bao Chen, Jing Zheng
Author Affiliations +
Abstract

A critical process for vascular endothelial growth factor (VEGF)- and fibroblast growth factor 2 (FGF2)-regulated cellular function is reversible protein phosphorylation, which is tightly controlled by a balance of protein kinases and phosphatases. We have reported that in ovine fetoplacental artery endothelial (OFPAE) cells, VEGF and FGF2 stimulate cell proliferation in part via activation of mitogen-activated protein kinase kinase 1/2 (MAP2K1/2)/mitogen-activated protein kinase 3/1 (MAPK3/1) and phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog 1 (AKT1) pathways. In the present study, we examined if protein phosphatase 3 (PPP3) mediated VEGF- and FGF2-stimulated OFPAE cell proliferation via modulating activation of MAPK3/1 and AKT1. Small interfering RNA (siRNA) targeting human PPP3 catalytic subunit alpha (PPP3CA) was used to suppress PPP3CA protein expression in OFPAE cells. Compared with the scrambled siRNA, PPP3CA siRNA decreased PPP3CA protein levels by approximately 97% without altering protein levels of protein phosphatase 2 catalytic subunit alpha, total MAPK3/1, total AKT1, or glyceraldehyde-3-phosphate dehydrogenase. Knockdown of PPP3CA protein expression enhanced VEGF-stimulated, but not FGF2-stimulated, cell proliferation. Knockdown of PPP3CA protein expression did not significantly affect VEGF-induced MAPK3/1 and AKT1 phosphorylation but attenuated FGF2-induced MAPK3/1 and AKT1 phosphorylation. Thus, to our knowledge, the present study is the first to demonstrate successful knockdown of PPP3CA protein expression in any cell model using a single pair of double-strained siRNA. Moreover, specific knockdown of PPP3CA protein expression enhances VEGF-stimulated, but not FGF2-stimulated, OFPAE cell proliferation and attenuates FGF2-induced, but not VEGF-induced, MAPK3/1 and AKT1 activation. Thus, PPP3CA differentially modulates the VEGF- and FGF2-stimulated cell proliferation and signaling cascades in OFPAE cells. These data also suggest that signaling molecules other than MAPK3/1 and AKT1 play an important role in VEGF- and FGF2-stimulated cell proliferation after knockdown of PPP3CA in OFPAE cells.

Kai Wang, Yang Song, Dong-Bao Chen, and Jing Zheng "Protein Phosphatase 3 Differentially Modulates Vascular Endothelial Growth Factor- and Fibroblast Growth Factor 2-Stimulated Cell Proliferation and Signaling in Ovine Fetoplacental Artery Endothelial Cells," Biology of Reproduction 79(4), 704-710, (1 October 2008). https://doi.org/10.1095/biolreprod.108.068957
Received: 5 March 2008; Accepted: 1 May 2008; Published: 1 October 2008
KEYWORDS
AKT1
cell proliferation
FGF2
growth factors
kinases
MAPK3/1
phosphatases
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top