Translator Disclaimer
1 July 2011 Artificial neural network model for estimating the soil temperature
Murat Ozturk, Ozlem Salman, Murat Koc
Author Affiliations +

Ozturk, M., Salman, O. and Koc, M. 2011. Artificial neural network model for estimating the soil temperature. Can. J. Soil Sci. 91: 551-562. Although soil temperature is a critically important agricultural and environmental factor, it is typically monitored with low spatial resolution and, as a result, methods are required to estimate soil temperature at locations remote from monitoring stations. In this study, cost-effective, feed-forward artificial neural network (ANN) models are developed and tested for estimating soil temperature at 5-, 10-, 20-, 50- and 100-cm depths using standard geographical and meteorological data (i.e., altitude, latitude, longitude, month, year, monthly solar radiation, monthly sunshine duration and monthly mean air temperature). These data plus measured monthly mean soil temperature were collected for 2006-2008 from 66 monitoring stations distributed throughout Turkey to obtain a total of 2376 data records (36 months×66 monitoring stations) for each of the five soil depths. At each soil depth, 1800 randomly selected data records were used to develop and train a separate ANN model, and the remaining 576 records at each depth were used to test and validate the resulting models. Good agreement was obtained between ANN-estimated soil temperature and measured soil temperature, as evidenced by correlation coefficients of 98.91, 97.99, 99.03, 98.26 and 95.37% for the 5-, 10-, 20-, 50- and 100-cm soil depths, respectively. It was concluded that ANN modeling is a reliable method for predicting monthly mean soil temperature in regions of Turkey where soil temperature monitoring stations are not present.

Murat Ozturk, Ozlem Salman, and Murat Koc "Artificial neural network model for estimating the soil temperature," Canadian Journal of Soil Science 91(4), 551-562, (1 July 2011).
Received: 16 June 2010; Accepted: 1 March 2011; Published: 1 July 2011

This article is only available to subscribers.
It is not available for individual sale.

artificial neural network
feed forward neural network
geographic variables
meteorological variables
prévision de la température du sol
Réseau neuronal artificiel
réseau neuronal sans rétroaction
Get copyright permission
Back to Top