Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
p23 is a small but important cochaperone for the Hsp90 chaperoning pathway. It appears to facilitate the adenosine triphosphate–driven cycle of Hsp90 binding to client proteins. It enters at a late stage of the cycle and enhances the maturation of client proteins. Although this role of p23 is fairly well established, recent studies suggest that it may have additional functions in the cell that merit further exploration.
Cdc37 is a relatively poorly conserved and yet essential molecular chaperone. It has long been thought to function primarily as an accessory factor for Hsp90, notably directing Hsp90 to kinases as substrates. More recent discoveries challenge this simplistic view. Cdc37 client proteins other than kinases have now been found, and Cdc37 displays a variety of Hsp90-independent activities both in vitro and in vivo. It can function as a molecular chaperone by itself, interact with other Hsp90 cochaperones in the absence of Hsp90, and even support yeast growth and protein folding without its Hsp90-binding domain. Thus, for many substrates, there may be many alternative chaperone pathways involving Cdc37, Hsp90, or both.
Based on the well-documented notion that oxygen affects the stability of dried cells, the role of the cytosolic and mitochondrial forms of superoxide dismutase (Sod) in the capacity of cells to resist dehydration was examined. Both enzymes are important for improving survival, and the absence of only 1 isoform did not impair tolerance against dehydration. In addition, sod strains showed the same Sod activity as the control strain, indicating that the deficiency in either cytoplasmic Cu/Zn or mitochondrial Mn was overcome by an increase in activity of the remaining Sod. To measure the level of intracellular oxidation produced by dehydration, a fluorescent probe, 2′,7′-dichlorofluorescein, was used. Dry cells exhibited a high increase in fluorescence: both control and sod mutant strains became almost 10-fold more oxidized after dehydration. Furthermore, the disaccharide trehalose was shown to protect dry cells against oxidation.
Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.
The Hsp70 class of heat shock proteins (Hsps) has been implicated at multiple points in the immune response, including initiation of proinflammatory cytokine production, antigen recognition and processing, and phenotypic maturation of antigen-presenting cells (APCs). This class of chaperones is highly conserved in both sequence and structure, from prokaryotes to higher eukaryotes. In all cases, these chaperones function to bind short segments of either peptides or proteins through an adenosine triphosphate–dependent process. In addition to a possible role in antigen presentation, these chaperones have also been proposed to function as a potent adjuvant. We compared 4 evolutionary diverse Hsp70s, E. coli DnaK, wheat cytosolic Hsc70, plant chloroplastic CCS1, and human Hsp70, for their ability to prime and augment a primary immune response against herpes simplex virus-1 (HSV1). We discovered that all 4 Hsp70s were highly effective as adjuvants displaying similar ability to lipopolysaccharides in upregulating cytokine gene expression. In addition, they were all capable of inducing phenotypic maturation of APCs, as measured by the display of various costimulatory molecules. However, only the human Hsp70 was able to mediate sufficient cross-priming activity to afford a protective immune response to HSV1, as judged by protection from a lethal viral challenge, in vitro proliferation, cytotoxicity, and intracellular interferon-γ production. The difference in immune response generated by the various Hsp70s could possibly be due to their differential ability to interact productively with other coreceptors and different regulatory cochaperones.
A complementary deoxyribonucleic acid (cDNA) and the corresponding gene segment encoding a member of the 70-kDa heat shock protein (Hsp70) family have been cloned and sequenced from Locusta migratoria, the African migratory locust. These animals are noted for their thermotolerance, which can exceed temperatures of 50°C. Conceptually translated, the sequence shows a 654-residue protein with theoretical molecular weight of 71.4 kDa, which more closely resembles the mammalian Hsp70 (84–85% similarity) than Hsp70 from other insects, with ∼75% similarity to the sequence from the fruit fly. Comparisons of cDNA and genomic sequences show that the gene contains 2 introns, a 245-bp intron located in the 5′ untranslated region and a 91-bp intron in the coding region. Transcript abundance, as estimated by Northern blot analysis and reverse transcription–polymerase chain reaction, shows that heat shock treatment (45°C for 3 hours) does not elevate hsp70 messenger ribonucleic acid levels in fat bodies or in neural tissues. Immunological assays of Hsp70 show that the protein is constitutively expressed, with a modest, ∼2-fold induction after a 3-hour heat shock in fat body preparations. Although this sequence could be an hsc70 rather than an hsp70, it was the only cDNA isolated from heat-shocked tissue. Whatever the formal designation, such modest induction and constitutive expression may be ideally suited as an adaptation to the locust's chronic exposure to heat shock temperatures and the consequent demand for chaperone proteins.
Base excision repair (BER) of damaged deoxyribonucleic acid (DNA) is a multistep process during which potentially lethal abasic sites temporarily exist. Repair of these lesions is greatly stimulated by heat shock protein 70 (Hsp70), which enhances strand incision and removal of the abasic sites by human apurinic-apyrimidinic endonuclease (HAP1). The resulting single-strand gaps must then be filled in. Here, we show that Hsp70 and its 48- and 43-kDa N-terminal domains greatly stimulated filling in the single-strand gaps by DNA polymerase β, a novel finding that extends the role of Hsps in DNA repair. Incorporation of deoxyguanosine monophosphate (dGMP) to fill in single-strand gaps in DNA phagemid pBKS by DNA polymerase β was stimulated by Hsp70. Truncated proteins derived from the C-terminus of Hsp70 as well as unrelated proteins were less effective, but proteins derived from the N-terminus of Hsp70 remained efficient stimulators of DNA polymerase β repair of DNA single-strand gaps. In agreement with these results, repair of a gap in a 30-bp oligonucleotide by polymerase β also was strongly stimulated by Hsp70 although not by a truncated protein from the C-terminus of Hsp70. Sealing of the repaired site in the oligonucleotide by human DNA ligase 1 was not specifically stimulated by Hsp-related proteins. Results presented here now implicate and extend the role of Hsp70 as a partner in the enzymatic repair of damaged DNA. The participation of Hsp70 jointly with base excision enzymes improves repair efficiency by mechanisms that are not yet understood.
For T cells to recognize foreign antigens, the latter must be processed into peptides and associated to major histocompatibility complex (MHC) class II molecules by antigen-presenting cells (APC). APCs frequently operate under stress conditions induced by tissue damage, antigens, or inflammatory reactions. We analyze the effects of oxidative stress on intracellular processing using APC B cell lines. Before being tested for APC function, B cells (IIA1.6) were exposed for 2 hours to hydrogen peroxide (H2O2), a treatment that impairs their capacity to stimulate specific T cell clones. Because paraformaldehyde-fixed H2O2-treated B cells can still present extracellular peptides to T cell clones, the intracellular events of processing were investigated. Purified lysosomes from H2O2-treated B cells show increased proteolytic activity and increased generation of antigenic peptides. In addition, H2O2 treatment targets antigens to compartments that express low levels of MHC II and proteins (H-2M, H-2O) required for peptide loading onto this molecule. Finally, we suggest that impairment of antigen processing by oxidative stress reduces the induction of a T cell's response because H2O2 decreases the activation of naive T lymphocytes by dendritic cells. Together, these data indicate that oxidative stress inhibits the capacity of APCs to process antigens and to initiate a primary T cell response. The role of such modifications on the outcome of the specific immune response is discussed.
Magnetic fields (MFs) from domestic power sources have been implicated as being a potential risk to human health. A number of epidemiological studies have found a significant link between exposure to MFs and increased rates of cancers. There have also been a number of in vivo and in vitro studies reporting effects of MFs in animal disease models and on the expression or activity of a range of proteins. In the past decade, our group proposed that atherosclerosis may have an autoimmune component, with heat shock protein 60 (Hsp60) expressed in endothelial cells as the dominant autoantigen. A number of stressors have been shown to induce the expression of Hsp60, including the classical risk factors for atherosclerosis. We were interested to see if the exposure of endothelial cells to an MF elicited increased expression of Hsp60, as has been reported previously for Hsp70. The present work describes the exposure of endothelial cells to domestic power supply (50 Hz) MFs at an intensity of 700 μT. The results from our system indicate that cultured endothelial cells exposed to a high intensity of MF either alone or in combination with classical heat stress show no effects on the expression of Hsp60 at either the messenger ribonucleic acid or the protein level. As such, there is no evidence that exposure to extremely low–frequency MF would be expected to increase the expression of Hsp60 and therefore the initiation or progression of atherosclerosis.
Small heat shock/α-crystallin proteins function as molecular chaperones, protecting other proteins from irreversible denaturation by an energy-independent process. The brine shrimp, Artemia franciscana, produces a small heat shock/α-crystallin protein termed p26, found in embryos undergoing encystment, diapause, and metabolic arrest. These embryos withstand long-term anoxia and other stresses normally expected to cause death, a property likely dependent on molecular chaperone activity. The association of p26 with tubulin in unfractionated cell-free extracts of Artemia embryos was established by affinity chromatography, suggesting that p26 chaperones tubulin during encystment. To test this possibility, both proteins were purified by modifying published protocols, thereby simplifying the procedures, enhancing p26 yield about 2-fold, and recovering less tubulin than before. The denaturation of purified tubulin as it “aged” and exposed hydrophobic sites during incubation at 35°C was greatly reduced when p26 was present; however, tubulin polymerization into microtubules was reduced. On incubation at 35°C, centrifugation in sucrose density gradients demonstrated the association of purified p26 with tubulin. This is the first study where the relationship between a small heat shock/α-crystallin protein and tubulin from the same physiologically stressed organism was examined. The results support the proposal that p26 binds tubulin and prevents its denaturation, thereby increasing the resistance of encysted Artemia embryos to stress. Additional factors are apparently required for release of tubulin from p26 and restoration of efficient assembly, events that would occur as embryos resume development and the need for microtubules is established.
The enterocytes of the small intestine are occasionally exposed to pathogenic bacteria, such as Salmonella enteritidis 857, an etiologic agent of intestinal infections in humans. The expression of the heat shock response by enterocytes may be part of a protective mechanism developed against pathogenic bacteria in the intestinal lumen. We aimed at investigating whether S enteritidis 857 is able to induce a heat shock response in crypt- and villus-like Caco-2 cells and at establishing the extent of the induction. To establish whether S enteritidis 857 interfered with the integrity of the cell monolayer, the transepithelial electrical resistance (TEER) of filter-grown, differentiated (villus-like) Caco-2 cells was measured. We clearly observed damage to the integrity of the cell monolayer by measuring the TEER. The stress response was screened in both crypt- and villus-like Caco-2 cells exposed to heat (40–43°C) or to graded numbers (101–108) of bacteria and in villus-like cells exposed to S enteritidis 857 endotoxin. Expression of the heat shock proteins Hsp70 and Hsp90 was analyzed by polyacrylamide gel electrophoresis and immunoblotting with monoclonal antibodies. Exposure to heat or Salmonella resulted in increased levels of Hsp70 and Hsp90 in a temperature-effect or Salmonella-dose relationship, respectively. Incubation of Caco-2 cells with S enteritidis 857 endotoxin did not induce heat shock gene expression. We conclude that S enteritidis 857 significantly increases the levels of stress proteins in enterocyte-like Caco-2 cells. However, our data on TEER clearly indicate that this increase is insufficient to protect the cells.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere