How to translate text using browser tools
1 August 2014 Use of modelling to identify perennial ryegrass plant traits for future warmer and drier climates
B. R. Cullen, R. P. Rawnsley, R. J. Eckard, K. M. Christie, M. J. Bell
Author Affiliations +
Abstract

Potential exists to select pasture species better adapted to anticipated warmer temperatures and lower rainfall, associated with increasing atmospheric carbon dioxide (CO2) and other greenhouse gas concentrations, to maximise pasture yields and persistence. This study assessed the effect of increasing three plant traits in perennial ryegrass (Lolium perenne L.) to adapt to future climates: root depth; heat tolerance, defined as the ability of plant to grow at high temperatures; and responsiveness to elevated CO2 concentrations. Pasture production was simulated using the Sustainable Grazing Systems Pasture model at three sites with temperate climates in south-eastern Australia: Hamilton, Victoria (medium rainfall); Ellinbank, Victoria (high rainfall); and Elliott, Tasmania (high rainfall). Two future climate scenarios were created at each site by scaling the historical climate (1971–2010) by 1°C with –10% rain (435 ppm CO2) and 2°C with –20% rain (535 ppm CO2). A genotype × environment interaction suggested that the plants traits most effective at increasing pasture yield differed depending on the local climate. Increased root depth was the most effective change in a single trait that increased pasture harvested at Elliott, increased heat tolerance was most effective at Ellinbank, whereas increasing all three individual traits was similarly effective at Hamilton. At each site, the most effective traits increased pasture growth during the period between late spring and mid-summer compared with the current cultivar. When all three traits were increased at the same time, the pasture production advantage was greater than the additive effects of changing single traits at Hamilton and Ellinbank. Further consideration of the feasibility of selecting multiple traits and the effects of a broader range of climate projections is required. Nonetheless, results of this study provide guidance to plant breeders for selection of traits adapted to future climates.

© CSIRO 2014
B. R. Cullen, R. P. Rawnsley, R. J. Eckard, K. M. Christie, and M. J. Bell "Use of modelling to identify perennial ryegrass plant traits for future warmer and drier climates," Crop and Pasture Science 65(8), 758-766, (1 August 2014). https://doi.org/10.1071/CP13408
Received: 27 November 2013; Accepted: 1 June 2014; Published: 1 August 2014
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top