Context. Soil salinity mitigation with nanoparticles enriched biochar (Bc) can be a better strategy to resolve the uprising threat against food security.
Aim. The present study was designed to prepare silicon nanoparticles enriched biochar (Si-En-Bc) and zinc nanoparticles enriched biochar (Zn-En-Bc), which may not only reduced the toxic effects of NaCl stress on initial growth of radish crop but also improved its physiology and defensive mechanism.
Method. Seeds were germinated in pots with six treatments under normal and NaCl stress, (100 mM NaCl), Zn-En-Bc (1% w/w), and Si-En-Bc (1% w/w). Twenty days old seedlings were harvested and their fresh weight and various germination and biochemical parameters were tested.
Key results. A significant reduction in malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents was observed with Si-En-Bc + NaCl relative to NaCl stress. It might be due to the significant increase in the antioxidants such as superoxide dismutase (SOD) (42%), ascorbate peroxidase (APX) (38.7%), catalase (CAT) (30.9%) and shoot phenolics (59%) with Si-En-Bc + NaCl over NaCl stress. Application of Zn-En-Bc also caused a maximum increase in root and shoot Zn concentration (76.8 and 54.9%, respectively) under NaCl stress.
Conclusions. Hence, Si-En-Bc proved to be the best treatment for the radish plant to complete its early growth stage under NaCl stress while Zn-En-Bc not only compensated NaCl stress but also enhanced Zn availability.
Implications. This study implies that Si-En-Bc or Zn-En-Bc should be applied to the salt affected soil before the crop sowing so seedling can grow under the ameliorative effects of applied amendments. Also, Si-En-Bc or Zn-En-Bc should be tested on a degraded soils at larage scale such as field level.