How to translate text using browser tools
1 September 2013 Resilience of Arctic Mycorrhizal Fungal Communities after Wildfire Facilitated by Resprouting Shrubs
Rebecca E. Hewitt, Elizabeth Bent, Teresa N. Hollingsworth, F. Stuart Chapin, D. Lee Taylor
Author Affiliations +
Abstract

Climate-induced changes in the tundra fire regime are expected to alter shrub abundance and distribution across the Arctic. However, little is known about how fire may indirectly impact shrub performance by altering mycorrhizal symbionts. We used molecular tools, including ARISA and fungal ITS sequencing, to characterize the mycorrhizal communities on resprouting Betula nana shrubs across a fire-severity gradient after the largest tundra fire recorded in the Alaskan Arctic (July—October 2007). Fire effects on the components of fungal composition were dependant on the scale of taxonomic resolution. Variation in fungal community composition was correlated with fire severity. Fungal richness and relative abundance of dominant taxa declined with increased fire severity. Yet, in contrast to temperate and boreal regions with frequent wildfires, mycorrhizal fungi on resprouting shrubs in tundra were not strongly differentiated into fire-specialists and fire-sensitive fungi. Instead, dominant fungi, including taxa characteristic of late successional stages, were present regardless of fire severity. It is likely that the resprouting life history strategy of tundra shrubs confers resilience of dominant mycorrhizal fungi to fire disturbance by maintaining an inoculum source on the landscape after fire. Based on these results, we suggest that resprouting shrubs may facilitate post-fire vegetation regeneration and potentially the expansion of trees and shrubs under predicted scenarios of increased warming and fire disturbance in Arctic tundra.

Rebecca E. Hewitt, Elizabeth Bent, Teresa N. Hollingsworth, F. Stuart Chapin, and D. Lee Taylor "Resilience of Arctic Mycorrhizal Fungal Communities after Wildfire Facilitated by Resprouting Shrubs," Ecoscience 20(3), 296-310, (1 September 2013). https://doi.org/10.2980/20-3-3620
Received: 17 July 2013; Accepted: 1 November 2013; Published: 1 September 2013
KEYWORDS
arctic tundra
Betula nana
Betula nana
espaceur transcrit interne (région ITS) fongique
feu
fire
fungal internal transcribed spacer (ITS) region
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top