How to translate text using browser tools
30 May 2019 Effects of Site Thermal Variation and Physiography on Flight Synchrony and Phenology of the North American Spruce Beetle (Coleoptera: Curculionidae, Scolytinae) and Associated Species in Colorado
Isaac Hans Dell, Thomas Seth Davis
Author Affiliations +
Abstract

Spruce beetle, Dendroctonus rufipennis Kirby, is associated with forest mortality in Colorado and across western North America, yet it is not well understood how thermal variability affects basic population processes such as flight phenology. However, phenology–temperature relationships are important for understanding patterns of ecosystem disturbance, especially under projected climate warming. Here, we use a multiyear trapping study to test the hypothesis that spruce beetle flight synchrony, timing, and fitness traits (body size) are affected by variation in regional temperature and physiography. Large quantities of co-colonizing scolytines (Polygraphus convexifrons) (Coleoptera: Curculionidae, Scolytinae) and predatory beetles (Thanasimus undulatus) (Coleoptera: Cleridae) that may affect D. rufipennis populations also responded to spruce beetle synthetic pheromone lures. Relationships between flight patterns and environmental conditions were also analyzed for these species. The winter of 2018 was warmer and drier than winter 2017 and was associated with earlier flight for both scolytine species across most sites. The most important environmental factor driving D. rufipennis flight phenology was accumulated growing degree-days, with delayed flight cessation under warmer conditions and larger beetles following a warm winter. Flight was consistently more synchronous under colder growing season conditions for all species, but synchrony was not associated with winter temperatures. Warmer-than-average years promoted earlier flight of D. rufipennis and associated species, and less synchronous, prolonged flight across the region. Consequently, climate warming may be associated with earlier and potentially extended biotic pressure for spruce trees in the Rocky Mountain region, and flight phenology of multiple scolytines is plastic in response to thermal conditions.

© The Author(s) 2019. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Isaac Hans Dell and Thomas Seth Davis "Effects of Site Thermal Variation and Physiography on Flight Synchrony and Phenology of the North American Spruce Beetle (Coleoptera: Curculionidae, Scolytinae) and Associated Species in Colorado," Environmental Entomology 48(4), 998-1011, (30 May 2019). https://doi.org/10.1093/ee/nvz067
Received: 25 January 2019; Accepted: 7 May 2019; Published: 30 May 2019
JOURNAL ARTICLE
14 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
bark beetle
forest entomology
integrated pest management
thermal biology
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top