Many insects exhibit a short-day diapause response, whereby diapause is induced when daylength falls below a critical threshold. This response is an adaptation to ensure synchrony between periods of insect activity, and the availability of resources, but it can cause problems when organisms are moved to new locations, where early or late-induced diapause can prove a barrier to establishment. We explored the role of photoperiod in diapause induction in Hypena opulenta, a recently introduced classical biological control agent for invasive swallow-worts in North America. We conducted four experimental cage releases as well as a growth chamber experiment to determine the threshold photoperiod for diapause induction in H. opulenta. We determined that the critical photoperiod for inducing diapause in 50% of H. opulenta is 15 h 35 min, which the moth only experiences in the Ottawa release site around summer solstice.This may lead to univoltinism, premature diapause, and poor establishment at some North American release sites. Our results can inform practical aspects of the biological control program for H. opulenta, such as fine-tuning methodologies for stockpiling diapausing pupae in the laboratory and narrowing down the optimal time window for releases at a given location. Additionally, our results will be important for the development of a temperature-based phenology model to more accurately predict voltinism in H. opulenta across the invasive range of swallow-worts in North America.
How to translate text using browser tools
9 April 2020
The Effects of Photoperiod on Diapause Induction in Hypena opulenta (Lepidoptera: Erebidae), a Biological Control Agent Against Invasive Swallow-Worts in North America
Ian M. Jones,
Martin Lukas Seehausen,
Robert S. Bourchier,
Sandy M. Smith
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Environmental Entomology
Vol. 49 • No. 3
June 2020
Vol. 49 • No. 3
June 2020
biological control
diapause
Hypena opulenta
swallow-worts
Vincetoxicum