We have investigated the effects of experimental manipulation of copulation duration on sperm displacement in Drosophila melanogaster. Both spermless and normal males were used as second (displacing) males in the experiments. Displacement induced in the absence of sperm, that is, by males that pass accessory gland fluid alone, was a relatively inefficient process and produced much lower levels of displacement than normal males. Therefore, the presence of second-male sperm is necessary (but unlikely sufficient) for the high levels of displacement commonly observed in D. melanogaster. Furthermore, when second matings were interrupted at various times after the initiation of copulation, the distribution of displacement was strongly bimodal. We conclude that sperm transfer is relatively rapid, beginning shortly after the initiation of copulation, and is essentially complete before the midpoint of copulation. Therefore, sperm transfer bears no simple relation to copulation duration. Because it would be difficult to manipulate the numbers of sperm transferred by manipulating copulation duration, methods used to study sperm displacement in other insect species are unlikely to be appropriate for D. melanogaster. We also investigated why males mate for more than twice the duration that appears to be necessary to complete sperm transfer. Experimental interruption of first matings indicated that the extra copulation time serves to delay female remating, rather than to increase that rate at which of offspring are sired before remating.
Corresponding Editor: T. Markow