An explicit assumption of studies that employ a mitochondrial DNA (mtDNA) molecular clock is that mtDNA evolves independently of morphology. Here we report a very strong correlation between egg size divergence and cytochrome c oxidase-1 (CO1) amino acid sequence divergence among sister species of bivalve molluscs separated by the Central American Isthmus (i.e., “geminate” species). Analyses of the molecular data reveal that CO1 sequences likely did not diverge as a function of time or evolve in response to positive natural selection. Given that an excess of CO1 amino acid polymorphism exists within species (as expected if most mutations are only slightly deleterious), a third hypothesis is that reductions in effective population size could simultaneously increase the fixation rate of nearly neutral mtDNA polymorphisms and in some way also facilitate egg size evolution. The remarkable strength of the relationship between egg size and CO1 amino acid sequence demonstrates that, even in the absence of an obvious functional relationship or clock-like evolution, the amounts of molecular and morphological change can be tightly correlated, and therefore may reflect common processes. Accordingly, the assumption that the evolutionary divergence of molecules and morphology are independent must always be carefully examined.
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Evolution
Vol. 56 • No. 6
June 2002
Vol. 56 • No. 6
June 2002
effective population size
geminate species
life-history evolution
molecular clock
nearly neutral evolution