We investigated the role of the number of loci coding for a neutral trait on the release of additive variance for this trait after population bottlenecks. Different bottleneck sizes and durations were tested for various matrices of genotypic values, with initial conditions covering the allele frequency space. We used three different types of matrices. First, we extended Cheverud and Routman's model by defining matrices of “pure” epistasis for three and four independent loci; second, we used genotypic values drawn randomly from uniform, normal, and exponential distributions; and third we used two models of simple metabolic pathways leading to physiological epistasis. For all these matrices of genotypic values except the dominant metabolic pathway, we find that, as the number of loci increases from two to three and four, an increase in the release of additive variance is occurring. The amount of additive variance released for a given set of genotypic values is a function of the inbreeding coefficient, independently of the size and duration of the bottleneck. The level of inbreeding necessary to achieve maximum release in additive variance increases with the number of loci. We find that additive-by-additive epistasis is the type of epistasis most easily converted into additive variance. For a wide range of models, our results show that epistasis, rather than dominance, plays a significant role in the increase of additive variance following bottlenecks.