Mosaic hybrid zones arise when ecologically differentiated taxa hybridize across a network of habitat patches. Frequent interbreeding across a small-scale patchwork can erode species differences that might have been preserved in a clinal hybrid zone. In particular, the rapid breakdown of neutral divergence sets an upper limit to the time for which differences at marker loci can persist. We present here a case study of a mosaic hybrid zone between the fire-bellied toads Bombina bombina and B. variegata (Anura: Discoglossidae) near Apahida in Romania. In our 20 × 20 km study area, we detected no evidence of a clinal transition but found a strong association between aquatic habitat and mean allele frequencies at four molecular markers. In particular, pure populations of B. bombina in ponds appear to cause massive introgression into the surrounding B. variegata gene pool found in temporary aquatic sites. Nevertheless, the genetic structure of these hybrid populations was remarkably similar to those of a previously studied transect near Pescenica (Croatia), which had both clinal and mosaic features: estimates of heterozygote deficit and linkage disequilibrium in each country are similar. In Apahida, the observed strong linkage disequilibria should stem from an imperfect habitat preference that guides most (but not all) adults into the habitats to which they are adapted. In the absence of a clinal structure, the inferred migration rate between habitats implies that associations between selected loci and neutral markers should break down rapidly. Although plausible selection strengths can maintain differentiation at those loci adapting the toads to either permanent or temporary breeding sites, the divergence at neutral markers must be transient. The hybrid zone may be approaching a state in which the gene pools are homogenized at all but the selected loci, not dissimilar from an early stage of sympatric divergence.