The mass-specific metabolic rate hypothesis of Gillooly and others predicts that DNA mutation and substitution rates are a function of body mass and temperature. We tested this hypothesis with sequence divergences estimated from mtDNA cytochrome b sequences of 54 taxa of cyprinid fish. Branch lengths estimated from a likelihood tree were compared with metabolic rates calculated from body mass and environmental temperatures experienced by those taxa. The problem of unknown age estimates of lineage splitting was avoided by comparing estimated amounts of metabolic activity along phyletic lines leading to pairs of modern taxa from their most recent common ancestor with sequence divergences along those same pairs of phyletic lines. There were significantly more pairs for which the phyletic line with greater genetic change also had the higher metabolic activity, when compared to the prediction of a hypothesis that body mass and temperature are not related to substitution rate.
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Evolution
Vol. 61 • No. 5
May 2007
Vol. 61 • No. 5
May 2007
body size
Fish
metabolic rate
molecular clock
mtDNA
substitution rate
temperature