Understanding the evolution and maintenance of female mate choice requires information on both the benefits (the sum of direct and indirect benefits) and costs of selective mating. In this study, I assessed the fitness consequences of female mate choice in a freshwater crustacean. In Hyalella amphipods, males attempt to form precopulatory pairs with females. Large males, bearing large posterior gnathopods, tend to be over-represented in precopulatory pairs. I show that females receive both direct (reduced risk of predation while paired) and indirect (sexy sons) benefits from mating with these males. Furthermore, the behavioral mechanisms used to filter male phenotypes carry no detectable energetic cost for females. Thus, females that choose males with successful phenotypes are expected to have higher Darwinian fitness than females that mate at random. This study shows that direct and indirect selection act together to favor large male size, which explains the sexual size dimorphism and size-based mating biases observed in this species.
How to translate text using browser tools
1 July 2008
Direct and Indirect Fitness Consequences of Female Choice in a Crustacean
Rickey D. Cothran
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Evolution
Vol. 62 • No. 7
July 2008
Vol. 62 • No. 7
July 2008
amphipods
direct benefits
genetic benefits
Hyalella
sexual selection