How to translate text using browser tools
1 December 2009 Chromosomal Inversions and Species Differences: When are Genes Affecting Adaptive Divergence and Reproductive Isolation Expected to Reside within Inversions?
Jeffrey L. Feder, Patrik Nosil
Author Affiliations +
Abstract

Many factors can promote speciation, and one which has received much attention is chromosomal inversions. A number of models propose that the recombination suppressing effects of inversions facilitate the maintenance of differences between interbreeding populations in genes affecting adaptive divergence and reproductive isolation. These models predict that such genes will disproportionately reside within inversions, rather than in collinear regions. This hypothesis has received some support, but exceptions exist. Additionally, the effects of known low levels of recombination within inversions on these models are uninvestigated. Here, simulations are used to compare the maintenance of genetic differences between populations following secondary contact and hybridization in different inversion models. We compare regions with no recombination within them to regions with low recombination and to collinear regions with free recombination. Our most general finding is that the low levels of recombination within an inversion often result in the loss of accentuated divergence in inverted regions compared to collinear ones. We conclude that inversions can facilitate the maintenance of species differences under some conditions, but that large or qualitative differences between inverted and collinear regions need not occur. We also find that strong selection facilitates maintenance of divergence in a manner analogous to inversions.

© 2009 The Society for the Study of Evolution.
Jeffrey L. Feder and Patrik Nosil "Chromosomal Inversions and Species Differences: When are Genes Affecting Adaptive Divergence and Reproductive Isolation Expected to Reside within Inversions?," Evolution 63(12), 3061-3075, (1 December 2009). https://doi.org/10.1111/j.1558-5646.2009.00786.x
Received: 17 March 2009; Accepted: 1 June 2009; Published: 1 December 2009
JOURNAL ARTICLE
15 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
Epistasis
fitness trade-offs
gene flow
genomic islands
local adaptation
speciation
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top