Many plants, insects, and crustaceans show within-population variability in dormancy length. The question of whether such variability corresponds to a genetic polymorphism of pure strategies or a mixed bet-hedging strategy, and how the level of phenotypic variability can evolve remain unknown for most species. Using an eco-genetic model rooted in a 25-year ecological field study of a Chestnut weevil, Curculio elephas, we show that its diapause-duration variability is more likely to have evolved by the spread of a bet-hedging strategy than by the establishment of a genetic polymorphism. Investigating further the adaptive dynamics of diapause-duration variability, we find two unanticipated patterns of general interest. First, there is a trade-off between the ability of bet-hedging strategies to persist on an ecological time scale and their ability to invade. The optimal strategy (in terms of persistence) cannot invade, whereas suboptimal bet-hedgers are good invaders. Second, we describe an original evolutionary dynamics where each bet-hedging strategy (defined by its rate of prolonged diapause) resists invasion by all others, so that the first type of bet-hedger to appear persists on an evolutionary time scale. Such “evolutionary priority effect” could drive the evolution of maladapted levels of diapause-duration variability.
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Evolution
Vol. 63 • No. 7
July 2009
Vol. 63 • No. 7
July 2009
Adaptive dynamic
bet-hedging
chestnut weevil
coin-flipping plasticity
dormancy evolution
prolonged diapause
spreading of risk