How to translate text using browser tools
1 September 2009 Multiple Hiv-1 Infection of Cells and the Evolutionary Dynamics of Cytotoxic T Lymphocyte Escape Mutants
Dominik Wodarz, David N. Levy
Author Affiliations +
Abstract

Cytotoxic T lymphocytes (CTL) are an important branch of the immune system, killing virus-infected cells. Many viruses can mutate so that infected cells are not killed by CTL anymore. This escape can contribute to virus persistence and disease. A prominent example is HIV-1. The evolutionary dynamics of CTL escape mutants in vivo have been studied experimentally and mathematically, assuming that a cell can only be infected with one HIV particle at a time. However, according to data, multiple virus particles frequently infect the same cell, a process called coinfection. Here, we study the evolutionary dynamics of CTL escape mutants in the context of coinfection. A mathematical model suggests that an intermediate strength of the CTL response against the wild-type is most detrimental for an escape mutant, minimizing overall virus load and even leading to its extinction. A weaker or, paradoxically, stronger CTL response against the wild-type both lead to the persistence of the escape mutant and higher virus load. It is hypothesized that an intermediate strength of the CTL response, and thus the suboptimal virus suppression observed in HIV-1 infection, might be adaptive to minimize the impact of existing CTL escape mutants on overall virus load.

© 2009 The Society for the Study of Evolution.
Dominik Wodarz and David N. Levy "Multiple Hiv-1 Infection of Cells and the Evolutionary Dynamics of Cytotoxic T Lymphocyte Escape Mutants," Evolution 63(9), 2326-2339, (1 September 2009). https://doi.org/10.1111/j.1558-5646.2009.00727.x
Received: 27 June 2008; Accepted: 1 March 2009; Published: 1 September 2009
JOURNAL ARTICLE
14 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
coinfection
disease progression
evolutionary dynamics
HIV
immune escape
mathematical models
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top