BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
1 February 2003 What can DNA Tell us About the Cambrian Explosion?
Lindell Bromham
Author Affiliations +
Abstract

Molecular data is ideal for exploring deep evolutionary history because of its universality, stochasticity and abundance. These features provide a means of exploring the evolutionary history of all organisms (including those that do not tend to leave fossils), independently of morphological evolution, and within a statistical framework that allows testing of evolutionary hypotheses. In particular, molecular data have an important role to play in examining hypotheses concerning the tempo and mode of evolution of animal body plans. Examples are given where molecular phylogenies have led to a re-examination of some fundamental assumptions in metazoan evolution, such as the immutability of early developmental characters, and the evolvability of bauplan characters. Molecular data is also providing a new and controversial timescale for the evolution of animal phyla, pushing the major divisions of the animal kingdom deep into the Precambrian. There have been many reasons to question the accuracy and precision of molecular date estimates, such as the failure to account for lineage-specific rate variation and unreliable estimation of rates of molecular evolution. While these criticisms have been largely countered by recent studies, one problem has remained a challenge: could temporal variation in the rate of molecular evolution, perhaps associated with “explosive” adaptive radiations, cause overestimation of diversification dates? Empirical evidence for an effect of speciation rate, morphological evolution or ecological diversification on rates of molecular evolution is examined, and the potential for rate-variable methods for molecular dating are discussed.

Lindell Bromham "What can DNA Tell us About the Cambrian Explosion?," Integrative and Comparative Biology 43(1), 148-156, (1 February 2003). https://doi.org/10.1093/icb/43.1.148
Published: 1 February 2003
JOURNAL ARTICLE
9 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

RIGHTS & PERMISSIONS
Get copyright permission
Back to Top